K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

Xét ΔACD có

I,G lần lượt là trung điểm của CA,CD

=>IG là đường trung bình của ΔACD

=>IG//AD và IG=AD/2(1)

Xét ΔBAD có

E,K lần lượt là trung điểm của BA,BD

=>EK là đường trung bình của ΔBAD

=>EK//AD và EK=AD/2(2)

Từ (1) và (2) suy ra EK//IG và EK=IG

Xét tứ giác EKGI có

EK//GI

EK=GI

Do đó: EKGI là hình bình hành

=>EG cắt KI tại trung điểm của mỗi đường(3)

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔABD

=>EH//BD và EH=BD/2(4)

Xét ΔCBD có

F,G lần lượt là trung điểm của CB,CD

=>FG là đường trung bình của ΔCBD

=>FG//BD và FG=BD/2(5)

Từ (4) và (5) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHGF là hình bình hành

=>EG cắt HF tại trung điểm của mỗi đường(6)

Từ (3) và (6) suy ra EG,FH,IK đồng quy

11 tháng 11 2016

a) A B C D E F G H

Ta nối E và G ; H và F lại với nhau tạo thành hai đường chéo của tứ giác HEFG.

Vì ABCD là hình nhữ nhật nên ABCD là hình thang đặc biệt.

Có: EG là đường trung bình của của hình chữ nhật ABCD ( AE=EB; DG=GC )

=> EG//AD (1)

HF là đường trung bình của hình chữ nhật ABCD ( AH=HD; BF=FC )

=> HF//AB (2)

Theo bài ra: AB _|_ AD ( Tứ giác ABCD là hình chữ nhật )

Từ (1) và (2) suy ra: HF_|_ EG

Tứ giác có hai đường chéo vuông góc với nhau là hình thoi nên HEFG là hình thoi.

Bạn có thể chứng minh theo trục đối xứng.

b) A B C D E F G H I

Gọi I là giao điểm của hai AC và BD (1)

Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD

=> AI = IC và BI = ID

Xét tam giác ABC có: AE=EB và AI = IC

=> EI là đường trung bình của tam giác ABC

=> EG cắt AC tại I (2)

Xét tam giác ABD có AH=HD và DI=IB

=> HI là đường trung bình của tam giác ABD

=> HF cắt BD tại I (3)

Từ (1),(2),(3) suy ra EG cắt HF tại I (4)

Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I

12 tháng 11 2016

Sao cái hình để có phân nữa z

26 tháng 9 2019

Tương tự bài 3A

15 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔCDA có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

24 tháng 8 2022

a) QQ là trung điểm của ADAD

MM là trung điểm của ABAB

⇒QM⇒QM là đường trung bình của ΔABDΔABD

⇒QM∥=12BD⇒QM∥=12BD (1)

Tương tự PNPN là đường trung bình của ΔBCDΔBCD

⇒PN∥=12BD⇒PN∥=12BD (2)

Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)

⇒⇒ tứ giác MNPQMNPQ là hình bình hành.

 

Ta có: QQ là trung điểm của ADAD

JJ là trung điểm của ACAC

⇒QJ⇒QJ là đường trung bình của ΔACDΔACD

⇒QJ∥=12CD⇒QJ∥=12CD (1)

Tương tự KNKN là đường trung bình của ΔBCDΔBCD

⇒KN∥=12CD⇒KN∥=12CD (2)

Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)

⇒⇒ tứ giác JNKQJNKQ là hình bình hành.

 

b) Tứ giác MNPQMNPQ là hình bình hành

⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O

⇒O⇒O là trung điểm của MPMP và QNQN

Tứ giác INKQINKQ là hình bình hành

Có hai đường chéo là QNQN và KJKJ

OO là trung điểm của QNQN

⇒O⇒O là trung điểm của KJKJ

⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

17 tháng 1 2017

Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:

a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng

b) Tứ giác EGFH lầ hình vuông

1 tháng 7 2018

anh yeu em