Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A B C D E F G H
Ta nối E và G ; H và F lại với nhau tạo thành hai đường chéo của tứ giác HEFG.
Vì ABCD là hình nhữ nhật nên ABCD là hình thang đặc biệt.
Có: EG là đường trung bình của của hình chữ nhật ABCD ( AE=EB; DG=GC )
=> EG//AD (1)
HF là đường trung bình của hình chữ nhật ABCD ( AH=HD; BF=FC )
=> HF//AB (2)
Theo bài ra: AB _|_ AD ( Tứ giác ABCD là hình chữ nhật )
Từ (1) và (2) suy ra: HF_|_ EG
Tứ giác có hai đường chéo vuông góc với nhau là hình thoi nên HEFG là hình thoi.
Bạn có thể chứng minh theo trục đối xứng.
b) A B C D E F G H I
Gọi I là giao điểm của hai AC và BD (1)
Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD
=> AI = IC và BI = ID
Xét tam giác ABC có: AE=EB và AI = IC
=> EI là đường trung bình của tam giác ABC
=> EG cắt AC tại I (2)
Xét tam giác ABD có AH=HD và DI=IB
=> HI là đường trung bình của tam giác ABD
=> HF cắt BD tại I (3)
Từ (1),(2),(3) suy ra EG cắt HF tại I (4)
Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2)suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a) QQ là trung điểm của ADAD
MM là trung điểm của ABAB
⇒QM⇒QM là đường trung bình của ΔABDΔABD
⇒QM∥=12BD⇒QM∥=12BD (1)
Tương tự PNPN là đường trung bình của ΔBCDΔBCD
⇒PN∥=12BD⇒PN∥=12BD (2)
Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)
⇒⇒ tứ giác MNPQMNPQ là hình bình hành.
Ta có: QQ là trung điểm của ADAD
JJ là trung điểm của ACAC
⇒QJ⇒QJ là đường trung bình của ΔACDΔACD
⇒QJ∥=12CD⇒QJ∥=12CD (1)
Tương tự KNKN là đường trung bình của ΔBCDΔBCD
⇒KN∥=12CD⇒KN∥=12CD (2)
Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)
⇒⇒ tứ giác JNKQJNKQ là hình bình hành.
b) Tứ giác MNPQMNPQ là hình bình hành
⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O
⇒O⇒O là trung điểm của MPMP và QNQN
Tứ giác INKQINKQ là hình bình hành
Có hai đường chéo là QNQN và KJKJ
OO là trung điểm của QNQN
⇒O⇒O là trung điểm của KJKJ
⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
P là trung điểm của CD
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔABD
Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//PN và MQ=PN
hay MNPQ là hình bình hành
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:
a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng
b) Tứ giác EGFH lầ hình vuông
Xét ΔACD có
I,G lần lượt là trung điểm của CA,CD
=>IG là đường trung bình của ΔACD
=>IG//AD và IG=AD/2(1)
Xét ΔBAD có
E,K lần lượt là trung điểm của BA,BD
=>EK là đường trung bình của ΔBAD
=>EK//AD và EK=AD/2(2)
Từ (1) và (2) suy ra EK//IG và EK=IG
Xét tứ giác EKGI có
EK//GI
EK=GI
Do đó: EKGI là hình bình hành
=>EG cắt KI tại trung điểm của mỗi đường(3)
Xét ΔABD có
E,H lần lượt là trung điểm của AB,AD
=>EH là đường trung bình của ΔABD
=>EH//BD và EH=BD/2(4)
Xét ΔCBD có
F,G lần lượt là trung điểm của CB,CD
=>FG là đường trung bình của ΔCBD
=>FG//BD và FG=BD/2(5)
Từ (4) và (5) suy ra EH//FG và EH=FG
Xét tứ giác EHGF có
EH//FG
EH=FG
Do đó: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường(6)
Từ (3) và (6) suy ra EG,FH,IK đồng quy