Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AIB và tam giác CID có;
AI = CI ( vì I là trung điểm AC)
BI = DI ( vì I là trung điểm BD)
góc AIB = góc DIC ( cặp góc đối đỉnh )
=> tam giác AIB = tam giác CID ( c.g.c) (đpcm)
b. Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường => ABCD là hình bình hành
=> AD = BC và AD // BC (đpcm)
c.Do ABCD là hình bình hành (cmt)
=> AB // DC
=>góc DCA = góc BAC ( hai góc so le trong)
=> để CD vuông góc với AC thì góc DCA = 90o hay góc BAC = 90o hay tam giác ABC phải vuông tại A
Vậy điều kiện để CD vuông góc với AC là tam giác ABC phải vuông tại A
=))) Viết nhiều qué k cho mình nhe :333
Trong hình thang ABCD có: AE=ED(...)
BF=FC(...)
suy ra EF là đường trung bình của hình thang ABCD
suy ra EF//AB//DC suy ra EF//CD (1)
Trong tam giác ADC có: AE=ED(..)
AM=MC(...)
suy ra EM là đường trung bình của tam giác ADC
suy ra EM//CD (2)
Trong tam giác BDC co BN=ND(...)
BF=FC(...)
suy ra FN là đường trung bình của tam giác BDC
suy ra NF//CD(3)
Từ (1);(2) và (3) suy ra
E;N;M;E thẳng hàng
Vì EM là đường trung bình của tam giác ADC (cmt) nên \(EM=\frac{1}{2}CD\)
Trong tam giác ABD có: AE=DE(...)
DN=BN(....)
do đó EN là đường trung bình của tam giác ABD
\(\Rightarrow EN=\frac{1}{2}AB\)
Ta có NE+MN=EM
\(\Rightarrow MN=EM-NE=\frac{1}{2}CD-\frac{1}{2}AB=\frac{1}{2}\left(CD-AB\right)\)
1) Xét tam giác ABC có:
M là trung điểm của AB( gt)
N là trung điểm của BC( gt)
=> MN là đường trung bình của tam giác ABC
=> \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
Q là trung điểm của AD( gt)
P là trung điểm của DC( gt)
=> PQ là đường trung bình của tam giác ADC
=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)
b) Xét tam giác ABD có:
M là trung điểm của AB (gt)
F là trung điểm của BD(gt)
=> MF là đường trung bình của tam giác ABD
=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)
CMTT => EP là đường trung bình của tam giác ADC
=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)
Từ (3),(4) => Tứ giác MEPF là hình bình hành
c) Ta có: MN là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)
Ta có: PQ là đường trung bình của tam giác ABC(cmt)
\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)
Từ (5),(6) => Tứ giác MNPQ là hình bình hành
=> MP cắt PQ tại trung điểm của MP(t/c)
Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)
=> MP,NQ,EF đồng quy
a) Vì EFGH là tứ giác nên \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^0\)
\(\Leftrightarrow6x-4+5x+14+5x-14+3x+22=360^0\)
\(\Leftrightarrow19x+18=360^0\)
\(\Leftrightarrow19x=342^0\)
\(\Leftrightarrow x=18\)
Thay x=18 vào các góc E;H;G;F ta được
\(\widehat{E}=104^0\); \(\widehat{H}=76^0\); \(\widehat{G}=76^0\); \(\widehat{F}=104^0\)
Vì \(\widehat{E}+\widehat{H}=104^0+76^0=180^0\)mà chúng ở vị trí trong cùng phía nên EF//GH mà \(\widehat{H}=\widehat{G}=76^0\)nên EFGH là hình thang cân
b) Vì EF//HI (I thuộc HG va EF//HG) và FI//EH suy ra EFIH la hình bình hành
suy ra EF=HI
Vì EFGH là htc nên EH=FG và EG=HF
Tự vẽ hình nha
sao k giải đc sớm hưn đi đi hok xong rồi ms giải