K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

a) Vì EFGH là tứ giác nên \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^0\)

\(\Leftrightarrow6x-4+5x+14+5x-14+3x+22=360^0\)

\(\Leftrightarrow19x+18=360^0\)

\(\Leftrightarrow19x=342^0\)

\(\Leftrightarrow x=18\)

Thay x=18 vào các góc E;H;G;F ta được

\(\widehat{E}=104^0\)\(\widehat{H}=76^0\)\(\widehat{G}=76^0\)\(\widehat{F}=104^0\)

Vì \(\widehat{E}+\widehat{H}=104^0+76^0=180^0\)mà chúng ở vị trí trong cùng phía nên EF//GH mà \(\widehat{H}=\widehat{G}=76^0\)nên EFGH là hình thang cân

b)  Vì EF//HI (I thuộc HG va EF//HG) và FI//EH suy ra EFIH la hình bình hành 

suy ra EF=HI

Vì EFGH là htc nên EH=FG và EG=HF

Tự vẽ hình nha

10 tháng 8 2018

sao k giải đc sớm hưn đi đi hok xong rồi ms giải

9 tháng 8 2018

ở chỗ đề bài chữ Ai mik viết nhầm nhé chỗ ý là A1 nhé.

3 tháng 7 2018

a, Xét tam giác AIB và tam giác CID có;

AI = CI ( vì I là trung điểm AC)

BI = DI ( vì I là trung điểm BD)

góc AIB = góc DIC ( cặp góc đối đỉnh )

=> tam giác AIB = tam giác CID ( c.g.c) (đpcm)

b. Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường => ABCD là hình bình hành

=> AD = BC và AD // BC (đpcm)

c.Do ABCD là hình bình hành (cmt)

=> AB // DC

=>góc  DCA = góc BAC ( hai góc so le trong)

=> để CD vuông góc với AC thì góc DCA = 90o hay góc BAC = 90o hay tam giác ABC phải vuông tại A

Vậy điều kiện để  CD vuông góc với AC là tam giác ABC phải vuông tại A 

=))) Viết nhiều qué k cho mình nhe :333

15 tháng 8 2018

Trong hình thang ABCD có: AE=ED(...)

                                            BF=FC(...)

suy ra EF là đường trung bình của hình thang ABCD

   suy ra EF//AB//DC suy ra EF//CD (1)

Trong tam giác ADC có: AE=ED(..)

                                       AM=MC(...)

suy ra EM là đường trung bình của tam giác ADC

suy ra EM//CD (2)

Trong tam giác BDC co BN=ND(...)

                                      BF=FC(...)

suy ra FN là đường trung bình của tam giác BDC

suy ra NF//CD(3)

Từ (1);(2) và (3) suy ra

E;N;M;E thẳng hàng

Vì EM là đường trung bình của tam giác ADC (cmt) nên \(EM=\frac{1}{2}CD\)

Trong tam giác ABD có: AE=DE(...)

                                      DN=BN(....)

do đó EN là đường trung bình của tam giác ABD

\(\Rightarrow EN=\frac{1}{2}AB\)

Ta có NE+MN=EM

\(\Rightarrow MN=EM-NE=\frac{1}{2}CD-\frac{1}{2}AB=\frac{1}{2}\left(CD-AB\right)\)

22 tháng 8 2021

1) Xét tam giác ABC có:

M là trung điểm của AB( gt)

N là trung điểm của BC( gt)

=> MN là đường trung bình của tam giác ABC

=> \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

Q là trung điểm của AD( gt)

P là trung điểm của DC( gt)

=> PQ là đường trung bình của tam giác ADC

=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)

b) Xét tam giác ABD có:

M là trung điểm của AB (gt)

F là trung điểm của BD(gt)

=> MF là đường trung bình của tam giác ABD

=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)

CMTT => EP là đường trung bình của tam giác ADC

=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)

Từ (3),(4) => Tứ giác MEPF là hình bình hành

 

22 tháng 8 2021

c) Ta có: MN là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)

Ta có: PQ là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)

Từ (5),(6) => Tứ giác MNPQ là hình bình hành

=> MP cắt PQ tại trung điểm của MP(t/c)

Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)

=> MP,NQ,EF đồng quy