K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

Sao ko ai làm đ bài này trời ? hic.

 

4 tháng 5 2017

vì tứ giác ABCD nội tiếp,theo định lý Ptoleme ta có:

AC.BD=AB.CD+AD.BC (ĐPCM)

Ta có: `hat(ABD) = hat(ACD)`.

Lấy `M in AC` sao cho `hat(ADB) = hat(MDC)`.

`=> triangle ABD ~ triangle MCD`.

`=> (AB)/(MC) = (BD)/(CD) => AB . CD = BD . MC`.

Xét `2 triangle ADM, BDC`, ta có:

`hat(ADM) = hat(BDC)`.

`(DA)/(DM) = (BD)/(DC) ( triangle ABD ~ triangle MCD )`.

`=> triangle ADM ~ triangle BCD => (AD)/(AM) = (BD)/(CB) => AD . BC = BD . AM`

`=> AD . BC + AD . BC = BD . AM + BD . MC`

`=> AD . BC + AD . BC = BD(AM+MC)`

`=> AD.BC+AD.BC = BD . AC => dpcm`.

 

9 tháng 5 2022

cảm ơn nhiều ạ

13 tháng 4 2019

Định lí Ptoleme

22 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 12 2015

Định lý Ptoleme xem trên mạng

  1. Ta có ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)
20 tháng 4 2019

cho t/g nội tiếp ABCD

khi đó <BAC= <BDC VÀ <ADB = <ACB

DỰNG K TRÊN AC SAO CHO <ABK = <CBD

VÌ <ABK+ <CBK=<ABC= <CBD+ <ABD NÊN <CBK= <ABD

➙△ABK∼△DBC VÀ △ABD∼△KBC

➙AK/AB=CD/BD VÀ CK/BC=DA/BC

➙AK*BD=AB*CD VÀ CK*BD =BC*DA

CỘNG LẠI ĐƯỢC:AK*BD+CK*BD=AB*CD+BC*DA

NHÓM NHÂN TỬ:(AK+CK)*BD=AB*CD+BC*DA

MÀ AK+CK=AC

VẬY AC*BD=AB*CD+BC*DA(đpcm)

3 tháng 5 2019

A B C D E

Giả sử \(\widehat{ACB}>\widehat{ACD}\) trên BD lấy điểm E sao cho \(\widehat{BCE}=\widehat{ACD}\)

Xét △ACD và △BCE có

\(\widehat{BCE}=\widehat{ACD}\)(gt)

\(\widehat{CAD}=\widehat{CBE}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{CD}\))

Suy ra △ACD \(\sim\) △BCE(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BE}\Rightarrow BC.AD=AC.BE\)(1)

Xét △ACB và △DCE có

\(\widehat{BCE}=\widehat{ACD}\Rightarrow\)\(\widehat{BCE}+\widehat{ECA}=\widehat{ACD}+\widehat{ECA}\Rightarrow\widehat{ACB}=\widehat{DCE}\)

\(\widehat{CDE}=\widehat{CAB}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{BC}\))

Suy ra △ACB \(\sim\) △DCE(g-g)

\(\Rightarrow\frac{AC}{DC}=\frac{AB}{DE}\Rightarrow AB.CD=AC.DE\)(2)

Cộng (1) và (2)\(\Leftrightarrow AB.CD+BC.AD=AC.BE+AC.DE=AC\left(BE+CE\right)=AC.BD\)

Vậy \(AB.CD+BC.AD=AC.BD\)

a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)

nên MCOD là tứ giác nội tiếp

b: Xét ΔMCA và ΔMBC có 

\(\widehat{MCA}=\widehat{MBC}\)

\(\widehat{AMC}\) chung

Do đó; ΔMCA\(\sim\)ΔMBC