K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: `hat(ABD) = hat(ACD)`.

Lấy `M in AC` sao cho `hat(ADB) = hat(MDC)`.

`=> triangle ABD ~ triangle MCD`.

`=> (AB)/(MC) = (BD)/(CD) => AB . CD = BD . MC`.

Xét `2 triangle ADM, BDC`, ta có:

`hat(ADM) = hat(BDC)`.

`(DA)/(DM) = (BD)/(DC) ( triangle ABD ~ triangle MCD )`.

`=> triangle ADM ~ triangle BCD => (AD)/(AM) = (BD)/(CB) => AD . BC = BD . AM`

`=> AD . BC + AD . BC = BD . AM + BD . MC`

`=> AD . BC + AD . BC = BD(AM+MC)`

`=> AD.BC+AD.BC = BD . AC => dpcm`.

 

9 tháng 5 2022

cảm ơn nhiều ạ

13 tháng 4 2019

Định lí Ptoleme

23 tháng 12 2015

Sao ko ai làm đ bài này trời ? hic.

 

4 tháng 5 2017

vì tứ giác ABCD nội tiếp,theo định lý Ptoleme ta có:

AC.BD=AB.CD+AD.BC (ĐPCM)

22 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

23 tháng 12 2015

Định lý Ptoleme xem trên mạng

20 tháng 4 2019

cho t/g nội tiếp ABCD

khi đó <BAC= <BDC VÀ <ADB = <ACB

DỰNG K TRÊN AC SAO CHO <ABK = <CBD

VÌ <ABK+ <CBK=<ABC= <CBD+ <ABD NÊN <CBK= <ABD

➙△ABK∼△DBC VÀ △ABD∼△KBC

➙AK/AB=CD/BD VÀ CK/BC=DA/BC

➙AK*BD=AB*CD VÀ CK*BD =BC*DA

CỘNG LẠI ĐƯỢC:AK*BD+CK*BD=AB*CD+BC*DA

NHÓM NHÂN TỬ:(AK+CK)*BD=AB*CD+BC*DA

MÀ AK+CK=AC

VẬY AC*BD=AB*CD+BC*DA(đpcm)

  1. Ta có ABCD là tứ giác nội tiếp đường tròn.
  2. Trên cung nhỏ BC, ta có các góc nội tiếp ∠BAC = ∠BDC, và trên cung AB, ∠ADB = ∠ACB.
  3. Lấy 1 điểm K trên AC sao cho ∠ABK = ∠CBD;
    1. Từ ∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD, suy ra ∠CBK = ∠ABD.
  4. Do vậy tam giác △ABK đồng dạng với tam giác △DBC, và tương tự có △ABD ∼ △KBC.
  5. Suy ra: AK/AB = CD/BD, và CK/BC = DA/BD;
    1. Từ đó AK·BD = AB·CD, và CK·BD = BC·DA;
    2. Cộng các vế của 2 đẳng thức trên: AK·BD + CK·BD = AB·CD + BC·DA;
    3. Hay: (AK+CK)·BD = AB·CD + BC·DA;
    4. Mà AK+CK = AC, nên AC·BD = AB·CD + BC·DA; (điều phải chứng minh)

a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)

nên MCOD là tứ giác nội tiếp

b: Xét ΔMCA và ΔMBC có 

\(\widehat{MCA}=\widehat{MBC}\)

\(\widehat{AMC}\) chung

Do đó; ΔMCA\(\sim\)ΔMBC

3 tháng 5 2019

A B C D E

Giả sử \(\widehat{ACB}>\widehat{ACD}\) trên BD lấy điểm E sao cho \(\widehat{BCE}=\widehat{ACD}\)

Xét △ACD và △BCE có

\(\widehat{BCE}=\widehat{ACD}\)(gt)

\(\widehat{CAD}=\widehat{CBE}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{CD}\))

Suy ra △ACD \(\sim\) △BCE(g-g)

\(\Rightarrow\frac{AC}{BC}=\frac{AD}{BE}\Rightarrow BC.AD=AC.BE\)(1)

Xét △ACB và △DCE có

\(\widehat{BCE}=\widehat{ACD}\Rightarrow\)\(\widehat{BCE}+\widehat{ECA}=\widehat{ACD}+\widehat{ECA}\Rightarrow\widehat{ACB}=\widehat{DCE}\)

\(\widehat{CDE}=\widehat{CAB}\)(2 góc nội tiếp cùng chắn cung \(\stackrel\frown{BC}\))

Suy ra △ACB \(\sim\) △DCE(g-g)

\(\Rightarrow\frac{AC}{DC}=\frac{AB}{DE}\Rightarrow AB.CD=AC.DE\)(2)

Cộng (1) và (2)\(\Leftrightarrow AB.CD+BC.AD=AC.BE+AC.DE=AC\left(BE+CE\right)=AC.BD\)

Vậy \(AB.CD+BC.AD=AC.BD\)