Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DEBF là hình bình hành vì EB=DF và // với nhau
b) do 2 tam giác CAB và ACD bằng nhau
có AC (chung) . 2 đường chéo AC và BD nên O là trung điểm của AC
E, F là trung đểm của AB và CD nên 3 điểm FOF thẳng hàng
ta lại có OE và OF là đường trubg bình của 2 tam giác bằng nhau như ở trên
=> OE=OF => đối xứng qua O
c) do DEvaf BF // nên EM // FN
ta lại có 2 tam giác AME= FNC vì các góc A=C; E=F (do các cặp góc so le bằng nhau)
=> EM=FN => EM // FN
vaayjEMFN là hình bình hành
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm
Hướng giải:
a) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF)
b) Áp dụng đường trung bình của tam giác ( gợi ý : tam giác CAF) - câu a
kq: hình bình hành (dấu hiệu: tứ giác có 2 cạnh đối song song và bằng nhau)
c) cm BFKC là hình chữ nhật
(bằng cách: - cm BFKC là hình bình hành theo dấu hiệu tứ giác có 2 cặp cạnh đối song song
- cm BFKC là hình chữ nhật theo dấu hiệu hình bình hành có 1 go1cv vuông là hình chữ nhật)
Áp dụng tính chất hình chữ nhật có 2 đường chéo bằng nhau và CẮT NHAU TẠI TRUNG ĐIỂM MỖI ĐƯỜNG)
d) EI // OC (do OEIC là hình bình hành - cmt ở câu b)
Có chung điểm I => HI // EI (// OC) hay HK // EI