K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

bik lm câu a,b r mak ko bik lm câu c 

chỉ câu c với

4 tháng 1 2017

mình chịu

31 tháng 5 2018

A B C N Q D P

31 tháng 5 2018

Giúp mk giải câu c) với >< Mình đang cần gấp!!! 

2 tháng 10 2017

lười gõ =_=

link ây : https://olm.vn/hoi-dap/question/423397.html

tự làm nha

2 tháng 10 2017

a) Tam giác ABC có :

MA = MB (gt)

NB = NC (gt)

nên MN là đường trung bình của tam giác, do đó MN // AC và MN = AC

Chứng minh tương tự : PQ // AC và PQ = AC

Suy ra MN // PQ và MN = PQ.

Tứ giác MNPQ có hai cạnh đối vừa song song vừa bằng nhau => MNPQ là hình bình hành

b) Theo a), ta có: MQ = 1/2 AD (1)

Xét tam giác ABC có: MA = MB ; NA = NC

=>MN là đường trung bình của tam giác ABC

=> MN = 1/2 BC (2)

Từ (1) và (2) và AD=BC (ABCD là thang cân)

=> MQ = MN

Hình bình hành MNPQ có MQ = MN 

=> MNPQ là hình thoi

17 tháng 11 2018

a)  Ta có  :  \(AD=BC\left(gt\right)\)

=>  ABCD là hình thang cân   ( 2 cạnh bên = nhau )

b) Để MNPQ là hình chữ nhật thì \(\widehat{P}_1=90^o\)

Vì ABCD là hình thang cân ( câu a )

\(\Rightarrow AB//CD\)

Gọi I , K là 2 điểm nối từ A , B đến cạnh CD  và vuông góc với CD 

\(\Rightarrow AI//BK\) ( cùng vuông góc với CD )

Ta lại có : \(\widehat{P}_1=\widehat{K}\)( đ.vị )  (1)

Mà \(\widehat{K}=90^o\left(gt\right)\)   (2)

Từ (1) và (2)  \(\Rightarrow MNPQ\)là hình chữ nhật   ( có góc = 90 độ )

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

25 tháng 11 2021

Nối B với D
Xét ΔABD có :
AM = BM (gt)
AQ = DQ (gt)
=> QM là đường tb của ΔABD
=> QM // BD , QM = 1/2 BD(1)
Chứng minh tương tự ΔBCD
=> NP là đường tb của ΔBCD
=> NP // BD , NP = 1/2 BD (2)
Từ (1) và (2 ) => Tứ giác MNPQ là hình bình hành (dhnb)(đcpcm)