Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
P là trung điểm DC
Q là trung điểm AD
=> PQ là đường trung bình
=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}PQ//MN\\PQ=MN\end{matrix}\right.\)
=> MNPQ là hình bình hành
Phần còn lại thì điểm I đâu?
EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành.
=> MP và EF cắt nhau tại trung điểm I.
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành
Xét tứ giác ABD có : AQ=QD ;AM=MB
suy ra MQ là đường trung bình của tam giác ABD
vậy MQ= 1/2 BD và MQ song song với BD*
Xét tam giác CDB có : PD=PC;NC=NB
suy ra NP là đường trung bình của tam giác CDB
vậy NP song song với BD và NP =1/2 BD**
từ *và ** suy ra MQ song song với MP
MQ =MP
vậy tứ giác MNPQ là HBH
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành