K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

a, Trong \(\bigtriangleup{ABD}\) , ta có : MP là đường trung bình .

\(\Rightarrow\) MP // AD

MP = \(\dfrac{1}{2}\) AD

Ta có :

NQ // AD

MP = \(\dfrac{1}{2}\) AD

\(\Rightarrow\) PM = NQ (đpcm)

b,

Ta có : Tứ giác MPNQ là hình bình hành

\(\Rightarrow\) MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

\(\Rightarrow\) EF đi qua I

Vậy EF , MN và PQ đồng quy

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

11 tháng 1 2019

A B C M N O E F D H R Q P G

a) Dễ thấy: ^CMN = 900 - ^ACB/2;  ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ

=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)

Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)

Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).

b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC 

=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB

Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).

c) Sửa điểm E thành điểm R cho đỡ trùng.

+) C/m : ^BAC = 900 => AR = AC ?

Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB

Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:

\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).

+) C/m : AR = AD => ^BAC = 900 ?

Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)

=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông  góc AC hay ^BAC = 900 (đpcm).

d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)

\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\) 

\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)

\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)

Vậy hệ thức cần chứng minh là đúng => ĐPCM.

17 tháng 10 2018

tui ko biết

17 tháng 10 2018

ê ko bt trả lời lm chi

31 tháng 10 2019

A B C D M Q N P I

gọi I là giao điểm của QM và BD

Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)

\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)

vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)

Ta có : MB = NB ; DP = DQ ; PC = NC 

nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)

do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng

từ đó ta được đpcm