K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

Giả sử tứ giác ABCD có AD = a, AB = b, BC = c, CD = d không có hai cạnh nào bằng nhau. Ta có thể giả sử a < b < c < d.

Ta có a + b + c > BD + c > d.

Do đó a + b + c + d > 2d hay S > 2d (*)

Ta có: S\(⋮\)a => S = m.a (m\(\in\)N)   (1)

S\(⋮\)b => S = n.b (n\(\in\)N)               (2)

S\(⋮\)c => S = p.d (p\(\in\)N)               (3)

S\(⋮\)d => S = q.d (q\(\in\)N)              (4)   . Từ (4) và (*) suy ra q.d > 2d => q > 2

Vì a < b < c < d (theo giả sử) nên từ (1), (2), (3) và (4) suy ra m > n > p > q > 2

Do đó q\(\ge\)3; p\(\ge\)4; n\(\ge\)5; m\(\ge\)6

Từ (1), (2), (3), (4) suy ra 1/m = a/S; 1/n = b/S; 1/p = c/S; 1/q = d/S

Ta có: \(\frac{1}{6}+\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\ge\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}=\frac{a+b+c+d}{S}=1\)

hay \(\frac{19}{20}\ge1\)(vô lí)

Vậy tồn tại hai cạnh của tứ giác bằng nhau (đpcm)

5 tháng 6 2015

bạn viết từng baj ra mjk giải cho

29 tháng 6 2016

đúng đó bn

3 tháng 3 2020

a, có số đo 4 góc của tứ giác ABCD lafn lượt tỉ lệ với 5, 8, 13, 10

\(\Rightarrow\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{5+8+13+10}=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\) mà ^A + ^B + ^C + ^D = 360 do tứ giác ... 

\(\Rightarrow\frac{360}{36}=10=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\widehat{A}=50;\widehat{B}=80;\widehat{C}=130;\widehat{D}=100\)

b, xét ΔABF có : ^ABF + ^BAF  + AFB = 180 (định lí)

^ABF = 50 ; ^ABF = 80 (câu a)

=> ^AFB = 50 

FM là phân giác của ^AFB 

=> ^MFD = ^AFB : 2 (tính chất)

=> ^MFD = 50 : 2 = 25

^ADC + ^CDF = 180 (kề bù) mà ^ADC = 100 (câu a) => ^CDF = 80

ΔDMF có : ^MDA + ^DFM + ^DMF = 180 (định lí)

=> ^DMF = 75                        (1)

ΔADE có : ^ADE + ^DAE + ^AED = 180 (Định lí)

^EAD = 50; ^ADE = 100 

=> ^AED = 30                                      và (1)

ΔENM có : ^ENM + ^EMN + ^MNE = 180

=> ^ENM = 75 = ^EMN 

=>ΔEMN cân tại E mà EO là pg của ^NEM (gt)

=> EO đồng thời là trung tuyến của ΔNEM (định lí)

=> O là trung điểm của MN (định nghĩa)

hình tự kẻ

10 tháng 10 2017

Gán giá trị: a = b = c = d = 1

Ta có, giá trị phải thỏa mãn điều kiện \(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow1^4+1^4+1^4+1^4=1+1+1+1\)

\(=4\) (thỏa mãn yêu cầu đề bài)

\(\RightarrowĐPCM\)

Ps: Làm xàm chút thôi! nhưng vẫn có thể đúng!

12 tháng 4 2020

áp dụng bất đẳng thức a2+b2\(\ge\)2ab, dấu bằng xảy ra khi a=b

Ta có a4+b4\(\ge\)2a2b2,dấu bằng xảy ra khi a=b

c4+d4\(\ge\)2c2d2,dấu bằng xảy ra khi c=d

a2b2+c2d2\(\ge\)2abcd,dấu bằng xảy ra khi ab=cd

Vậy a4+b4+c4+d4\(\ge\)2a2b2+2c2d2=2(a2b2+c2d2)\(\ge\)2.2abcd=4abcd

Dấu = xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\)suy ra a=b=c=d suy ra a,b,c,d là 4 cạnh của 1 hình thoi