Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ODC có:
AB/CD=1/2 (gt)
OA/OC=1/2 (OA/AC=1/3)
=>AB//CD(d/l Ta-lét)
=> ABCD là hình thang
=> bạn hãy cố gắng làm tiếp nếu có thể
hãy tìm các cặp diện tích tam giác bằng nhau, chứ mik ko chắc nữa
Cho tứ giác ABCD có AC vuông góc và cắt BD tại O. AB=1/2 CD. OA =1/3 AC. SOAB =4,3 cm^2. Tính SABCD.
a) Ta có: \(\frac{4}{6}=\frac{6}{9}\left(=\frac{2}{3}\right)\)
hay \(\frac{AB}{AD}=\frac{AD}{DC}\)
Xét \(\Delta BAD\) và \(\Delta ADC\)có:
\(\widehat{BAD}=\widehat{ADC}=90^0\)
\(\frac{AB}{AD}=\frac{AD}{DC}\)
suy ra: \(\Delta BAD~\Delta ADC\)(c.g.c)
b) \(\Delta BAD~\Delta ADC\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{DAC}\)
mà \(\widehat{ABD}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(\widehat{DAC}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(AC\)\(\perp\)\(BD\)
c) Xét \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta AOB~\Delta COD\) (g.g)
\(\Rightarrow\)\(\frac{S_{AOB}}{S_{COD}}=\left(\frac{AB}{CD}\right)^2=\left(\frac{4}{9}\right)^2=\frac{16}{81}\)
tại sao diện tích tam giác aob/diện tích tam giác cod bằng (ab/cd)^2 giải thích hộ với
Bạn tự vẽ hình nhé bạn.
Xét \(\Delta ABC\)có AD là phân giác \(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
mà \(BD=3cm\); \(DC=4cm\)\(\Rightarrow\frac{AB}{AC}=\frac{3}{4}\)\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Vì \(\Delta ABC\)vuông tại A nên theo định lý Pytago ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=\left(BD+DC\right)^2\)\(\Rightarrow AB^2+AC^2=\left(3+4\right)^2\)\(\Rightarrow AB^2+AC^2=7^2=49\)
Từ \(\frac{AB}{3}=\frac{AC}{4}\)\(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2=\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{9+16}=\frac{49}{25}\)
\(\Rightarrow AB^2=\frac{49}{25}.9=\frac{441}{25}\)\(\Rightarrow AB=\pm\frac{21}{5}\)
\(AC^2=\frac{49}{25}.16=\frac{784}{25}\)\(\Rightarrow AC=\pm\frac{28}{5}\)
Vì \(AB>0\); \(AC>0\)\(\Rightarrow AB=\frac{21}{5}\)và \(AC=\frac{28}{5}\)
Vậy \(AB=\frac{21}{5}\) và \(AC=\frac{28}{5}\)