K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

tối thử

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

Nối A vs N

a)xét tg CEF có: N là t/đ của EF(gt) và A là t/đ của FC (vì C đx vs F qua A) => AN là đg trung bình của tg CEF

=> AN//CE và AN =1/2. CE

=> AN=1/2.BC(vì  BC = CE) => AN =BM(vì BM = 1/2. BC)

xét tg ANMB có: AN=MB (cmt) và AN//MB ( vì AN// CE ; B,M,C,E thẳng hàng)   => tg ANMB là hbh=> MN//AB và AB=MN   (1)   ; 

xét tg AGD có: I là t/đ của AG (gt) và K là t/đ của DG(gt) =>  IK là đg trung bình của tg AGD => IK=1/2.AD và IK //AD 

Mà B là t/đ của AD (vì A đx vs D qua B) => AB=BD=1/2.AD=> IK=AB ( =1/2.AD)     (2)

Từ (1),(2)=> IK=MN

Ta có: MN// AB(cmt) ; B thuộc AD => MN//AD

Xét tg MNIK có: IK=MN (cmt) và IK//MN (cùng // AD) 

=> tg MNIK là hbh (đpcm)

b) Do  tg MNIK là hbh ( câu a)  mà G là gđ của IM và KN nên G là t/đ của IM là KN

=> IG=MG và KG=NG

Mặt khác: I là t/đ của AG(gt)=> IG=AI=> AI=IG=GM

   K là t/đ của DG(gt) => Dk=KG => DK=KG=GN

xét tg ABC có: AM là đg trung tuyến (gt)  và AI=IG=GM (cmt) => G là trọng tâm của tg ABC   (*)

xét tg DEF có: DN là đg trung tuyến (gt) và DK=KG=GN(cmt) => G là trọng tâm của tg DEF   (**)

Từ (*),(**) => G vừa là trọng tam của tg ABC vừa là trọng tâm của tg DEF

=> Tg ABC và tg DEF có cùng trọng tâm là G    (đpcm)

17 tháng 8 2019

a) Chữa đề: \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(Ta\text{ }có:\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AB}\\ =\overrightarrow{CB}+\overrightarrow{DA}+\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=\overrightarrow{CB}+\overrightarrow{DA}\)

\(\)\(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{DC}\\ =2\overrightarrow{CM}+2\overrightarrow{NC}=2\left(\overrightarrow{NC}+\overrightarrow{CM}\right)=2\overrightarrow{NM}\)

Vậy \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)

\(\text{b) }\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=-\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{CA}+\overrightarrow{CB}\right)\\ =-\left[\left(\overrightarrow{DA}+\overrightarrow{DB}\right)+\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\right]\\ =-\left(2\overrightarrow{DM}+2\overrightarrow{CM}\right)=2\left(\overrightarrow{MD}+\overrightarrow{MC}\right)=4\left(\overrightarrow{MN}\right)\)

\(\text{c) }2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{DA}\right)+\left(\overrightarrow{AI}+\overrightarrow{NA}\right)\right]\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{DB}\right)+\overrightarrow{NI}\right]=2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)\)

Mà IN là dường trung bình \(\Delta BCD\)

\(\Rightarrow\left\{{}\begin{matrix}IN//BD\\IN=\frac{1}{2}BD\end{matrix}\right.\Rightarrow\overrightarrow{IN}=\frac{1}{2}\overrightarrow{BD}\\ \Rightarrow2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)=2\left(\overrightarrow{DB}+\frac{1}{2}\overrightarrow{DB}\right)=2\cdot\frac{3}{2}\overrightarrow{DB}=3\overrightarrow{DB}\)

27 tháng 12 2023

1) \(\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}\)

             \(=\overrightarrow{AD}+\dfrac{2}{3}\overrightarrow{DC}\)

             \(=\overrightarrow{AD}+\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\)

             \(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{AD}\) (đpcm)

2) \(AC=BD=\sqrt{AB^2+AD^2}=\sqrt{4^2+2^2}=2\sqrt{5}\)

\(\overrightarrow{AC}.\overrightarrow{AD}=\dfrac{AC^2+AD^2-CD^2}{2}\)

               \(=\dfrac{20+4-16}{2}=4\)

3) Gọi O là tâm hình chữ nhật

\(\Rightarrow2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)

Ta có:

\(2PA^2+PB^2+2PC^2+PD^2\)

\(=2\left(\overrightarrow{PO}+\overrightarrow{OA}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OB}\right)^2+2\left(\overrightarrow{PO}+\overrightarrow{OC}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OD}\right)^2\)

\(=6PO^2+2OA^2+OB^2+2OC^2+OD^2+2\overrightarrow{PO}\left(2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=\)\(6PO^2+2OA^2+OB^2+2OC^2+OD^2\)

\(=6PO^2+6OA^2\left[OB=OD=OA=OC\right]\)

\(=6PO^2+6\left(\sqrt{5}\right)^2\)

\(=6PO^2+30\ge30\) 

Dấu "=" xảy ra \(\Leftrightarrow O\equiv P\) 

\(\Rightarrow\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}\le\dfrac{1}{30}\)

\(Max\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}=\dfrac{1}{30}\Leftrightarrow P\equiv O\)