K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta thấy:

+ G là trọng tâm tam giác ABC ⇒ G ∈ BD ⇒ G ∈ BD

+ I ∈ DN (theo cách dựng hình).

+ J ∈ BP (theo cách dựng hình).

⇒ S, I, J, G ∈ mp(SPN)

Tương tự ⇒ S, I, J, G ∈ mp(SQM)

Vậy S, I, J, G là điểm chung của mp(SPN) và mp(SQM)

b)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta thấy:

+ S = PD ∩ EM

+ K ∈ DM

+ L ∈ PE

⇒ S, K, L ∈ (SPM)

Tương tự ⇒ S, K, L ∈ (SQN)

Vậy S, K, L là điểm chung của (SPM) và (SQN)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}

 

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\), \(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt...
Đọc tiếp

Cho hai mặt phẳng \(\left(\alpha\right)\&\left(\beta\right)\) cắt nhau theo giao tuyến m. Trên đường thẳng d cắt \(\left(\alpha\right)\) ở A và cắt \(\left(\beta\right)\) ở B ta lấy hai điểm cố định \(S_1,S_2\) không thuộc \(\left(\alpha\right)\)\(\left(\beta\right)\). Gọi M là một điểm di động trên \(\left(\beta\right)\). Giả sử các đường thẳng \(MS_1,MS_2\) cắt \(\left(\alpha\right)\) lần lượt tại \(M_1,M_2\)

a) Chứng minh rằng \(M_1M_2\) luon luôn đi qua một điểm cố định

b) Giả sử đường thẳng \(M_1M_2\) cắt giao tuyến m tại K. Chứng minh rằng ba điểm K, B, M thẳng hàng 

c) Gọi b là một đường thẳng thuộc mặt phẳng \(\left(\beta\right)\) nhưng không đi qua điểm B và cắt m tại I. Chứng minh rằng khi M di động trên b thì các điểm \(M_1\) và \(M_2\) di động trên hai đường thẳng cố định thuộc mặt phẳng \(\left(\alpha\right)\)

1
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

6 tháng 6 2017

A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\)\(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\)\(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

NV
23 tháng 11 2019

a/ Gọi O là giao điểm AC và BD

Trong mặt phẳng (SBD), nối SO cắt BN tại I \(\Rightarrow I=BN\cap\left(SAC\right)\)

b/ Nối MD cắt AC tại P

Trong mặt phẳng (SMD), nối MN cắt SP tại J

\(\Rightarrow J=MN\cap\left(SAC\right)\)

c/ Ba mặt phẳng (SAC); (BCN), (SDM) cắt nhau theo 3 giao tuyến phân biệt CI, MN, SP.

Mà SP cắt MN tại J \(\Rightarrow\) CI đi qua J hay C;I;J thẳng hàng

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)

31 tháng 3 2017

a) E, F ∈ (ABC) => EF ⊂ (ABC)

b) I ∈ EF => I ∈ ( DEF)