K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

N
9 tháng 8 2016

Ta có: S=1/31+1/32+...+1/60 > 10.1/40+10..1/50+10.1/60=1/4+1/5+1/6=37/60 > 3/5

Vậy S>3/5 (1)

S=1/31+1/32+...+1/60<10.1/30+10.1/40+10.1/50=1/3+1/4+1/5=47/60 < 4/5

Vậy S<4/5 (2)

Từ (1) và (2) => 3/5<S<4/5
 

7 tháng 7 2016

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

A > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

Vậy A > 3/5 (1)

Mặt khác

A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50)  < 1/4 ;   (1/51 + 1/52+...+1/59+1/60) < 1/5

Mà A = (1/3 + 1/4 + 1/5) < 4/5 (Vì 1/3 + 1/5 < 3/5 hay 7/12 < 3/5 hay 35/60 < 36/60)

Vậy A <  4/5 (2)

Từ (1);(2)=> 3/5 <S <4/5 (dpcm)

Ta có:

S=131+132+133+...+160S=131+132+133+...+160

⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14

141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15

151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16

⇒S>14+15+16=3760>35⇒S>14+15+16=3760>35

⇒S>35(1)⇒S>35(1)

Lại có:

S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)S=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)

Nhận xét:

131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13

141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14

151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15

⇒S<13+14+15=4760<45⇒S<13+14+15=4760<45

⇒S<45(2)⇒S<45(2)

Từ (1)(1) và (2)(2)

⇒35<S<45⇒35<S<45 (Đpcm)

mình nhằm nha

để gửi lại ,

xin lỗi nhiều

3 tháng 3 2018
  • \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+..+\frac{1}{50}\right)+\left(\frac{1}{51}+..+\frac{1}{60}\right)\)

\(\Rightarrow S>\left(\frac{1}{40}+\frac{1}{40}+..+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+..+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+..+\frac{1}{60}\right)\)

\(\Rightarrow S>10\cdot\frac{1}{40}+10\cdot\frac{1}{50}+10\cdot\frac{1}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(1\right)\)

  • \(S=\frac{1}{31}+\frac{1}{32}+..+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+..+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{60}\right)\)

\(S< \left(\frac{1}{31}+\frac{1}{31}+..+\frac{1}{31}\right)+\left(\frac{1}{41}+\frac{1}{41}+..+\frac{1}{41}\right)+\left(\frac{1}{51}+\frac{1}{51}+..+\frac{1}{51}\right)\)

\(S< 10\cdot\frac{1}{31}+10\cdot\frac{1}{41}+10\cdot\frac{1}{51}=\frac{10}{31}+\frac{10}{41}+\frac{10}{51}< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(2\right)\)

Từ (1) và (2) => đpcm

Tham khảo nha bạn:https://olm.vn/hoi-dap/detail/98411629106.html

29 tháng 4 2019

Ta thấy tổng trên có 30 số hạng. Ta nhóm tổng S thành 3 nhóm.

-> \(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\) 

\(< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\) 

\(=\frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\left(1\right)\)

Ta lại có:

\(S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\) 

\(=\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\left(2\right)\)

Từ (1), (2), ta có:

\(\frac{3}{5}< S< \frac{4}{5}\RightarrowĐPCM\)

5 tháng 5 2016

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5 (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S < 4/5 (2)

Từ (1) và (2) => 3/5 <S<4/5

5 tháng 5 2016

so sanh 2 vế nha

vế 1 chứng minh S>3/5

ta có:S=1/31+1/32+.......+1/60>10.1/40+10.1/50+10.1/60=1/4+1/5+1/6=37/60>3/5

vậy S>3/5

vế 2 chứng minh S<4/5

ta có:S=1/31+1/32+.....+1/60<10.1/30+10.1/40+10.1/50=1/3+1/4+1/5=47/60<4/5

vậy S<4/5

13 tháng 2 2018

giúp mình nhé. ai nhanh mình tick cho