K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

S có 30 số hạng. Nhóm thành 3 nhóm, mỗi  nhóm 10 số hạng

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{42}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S

13 tháng 5 2016

Bn Đặng Phương Thảo giỏi quá 

10 tháng 1 2018

\(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}\)

\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\) (1)

Lại có: \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(\frac{1}{41}+...+\frac{1}{50}< \frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\)

\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\) (2)

Từ (1) và (2) => \(\frac{3}{5}< S< \frac{4}{5}\)

28 tháng 7 2015

Mình trả lời cho 1 bạn rồi đó

ĐÂY NÈ

14 tháng 5 2019

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left[\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right]+\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right]+\left[\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right]\)

\(S< \left[\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right]+\left[\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right]+\left[\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right]\)

\(S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}\)

\(S< \frac{37}{60}< \frac{48}{60}=\frac{4}{5}\)

14 tháng 5 2019

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{60}\)\(CMR:S< \frac{4}{5}\)

Số số hạng của S là: (60 - 31 ) + 1 = 30 ( số ), chia thành 6 nhóm, mỗi nhóm 5 số hạng.

Ta có: 

\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{31}+\frac{1}{31}+\frac{1}{31}+\frac{1}{31}+\frac{1}{31}\)

\(\frac{1}{36}+\frac{1}{37}+\frac{1}{38}+\frac{1}{39}+\frac{1}{40}< \frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)

\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+\frac{1}{45}< \frac{1}{41}+\frac{1}{41}+\frac{1}{41}+\frac{1}{41}+\frac{1}{41}\)

\(\frac{1}{46}+\frac{1}{47}+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}< \frac{1}{46}+\frac{1}{46}+\frac{1}{46}+\frac{1}{46}+\frac{1}{46}\)

\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+\frac{1}{55}< \frac{1}{51}+\frac{1}{51}+\frac{1}{51}+\frac{1}{51}+\frac{1}{51}\)

\(\frac{1}{56}+\frac{1}{57}+\frac{1}{58}+\frac{1}{59}+\frac{1}{60}< \frac{1}{56}+\frac{1}{56}+\frac{1}{56}+\frac{1}{56}+\frac{1}{56}\)

\(=>S=\frac{5}{31}+\frac{5}{36}+\frac{5}{41}+\frac{5}{46}+\frac{5}{51}+\frac{5}{56}\)

\(=>S< 0,78...\)\(=>S< \frac{7}{10}\)( mình ước lượng thôi nha )

Vậy \(S< \frac{4}{5}\)vì \(\frac{4}{5}=\frac{8}{10}< \frac{7}{10}\)

~UMK..., mình ko chắc đúng ko nữa~

30 tháng 3 2023

ai trả lời đúng mình tặng coin

 

6 tháng 5

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

16 tháng 4 2022

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

 

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !

16 tháng 4 2022

Tham khảo: