Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có\(\frac{x}{z}=\frac{z}{y}\)⇒\(xy=\text{x}^{2}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{\text{x}^{2}+xy}{\text{y}^{2}+xy}\)=\(\frac{x(x+y)}{y(x+y)}\)=\(\frac{x}{y}\)
⇒\(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
Vậy \(\frac{\text{x}^{2}+\text{z}^{2}}{\text{y}^{2}+\text{z}^{2}}\)=\(\frac{x}{y}\)
Giải:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2x+2y+2z}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=1\)
Xét \(\frac{x}{y+z+1}=\frac{1}{2}\)
\(\Rightarrow2x=y+z+1\)
\(\Rightarrow3x=x+y+z+1\)
\(\Rightarrow3x=1+1\)
\(\Rightarrow x=\frac{2}{3}\)
Xét \(\frac{y}{x+z+1}=\frac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=1+1\)
\(\Rightarrow y=\frac{2}{3}\)
Xét \(\frac{z}{x+y-2}=\frac{1}{2}\)
\(\Rightarrow2z=x+y-2\)
\(\Rightarrow3z=x+y+z-2\)
\(\Rightarrow3z=1-2\)
\(\Rightarrow z=\frac{-1}{3}\)
Từ đó \(\frac{x+y}{z+1}=\frac{\frac{2}{3}+\frac{2}{3}}{\frac{-1}{3}+1}=\frac{\frac{4}{3}}{\frac{2}{3}}=\frac{4}{2}=2\)
Vậy \(\frac{x+y}{z+1}=2\)
\(\frac{x}{y+z+1}\)= \(\frac{y}{x+z+1}\)= \(\frac{z}{x+y-2}\)= \(\frac{x+y+z}{y+z+1+x+z+1+x+y-1}\)
= \(\frac{x+y+z}{2x+2y+2z}\)= \(\frac{x+y+z}{2\left(x+y+z\right)}\)= \(\frac{1}{2}\)
=> \(\frac{z}{x+y-2}\)= \(\frac{1}{2}\)= \(\frac{z+1}{x+y-2+2}\)= \(\frac{z+1}{x+y}\)
=> \(\frac{z+1}{x+y}\)= \(\frac{1}{2}\)=> \(\frac{x+y}{z+1}\)= 2
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
⇒ \(\left\{{}\begin{matrix}x=zk\\z=yk\end{matrix}\right.\)
Khi đó
\(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+\left(yk\right)^2}{y^2+z^2}=\frac{k^2z^2+k^2y^2}{y^2+z^2}=\frac{k^2\left(z^2+y^2\right)}{y^2+z^2}=k^2\)
\(\frac{x}{y}=\frac{zk}{y}=\frac{ykk}{y}=k^2\)
Do đó \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(=k^2\right)\)