Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2c}{2d}=\dfrac{a+2c}{b+2d}\)
\(\Rightarrow\dfrac{a+c}{b+d}=\dfrac{a+2c}{b+2d}\)
\(\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\left(đpcm\right)\)
Vậy...
Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
\(\Rightarrow\left[{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\) (!)
Thay (!) vào đề bài:
VT = \(c\left(k+2\right).d\left(k+1\right)\left(1\right)\)
\(VP=c\left(k+1\right).d\left(k+2\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT=VP\)
hay \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\).
\(\left(a-2c\right)\left(b+2d\right)=\left(b-2d\right)\left(a+2c\right)\)
\(\Leftrightarrow ab+2ad-2bc-4cd=ab+2bc-2ad-4cd\)
\(\Leftrightarrow2ad+2ad=2bc+2bc\Leftrightarrow4ab=4bc\)
\(\Leftrightarrow ad=bc\Rightarrow\dfrac{a}{b}=\dfrac{c}{d},\left(a,b,c,d\ne0\right)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1)
\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}\)
\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{2b}{2d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)(vì \(\frac{a}{c}=\frac{b}{d}\))
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\left(đpcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\\ =>\orbr{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(Taco:\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
\(=>\left(bk+2dk\right).\left(b+d\right)=\left(bk+dk\right).\left(b+2d\right)\)
\(=>\frac{bk+2dk}{bk+dk}=\frac{b+2d}{b+d}\)
\(=>\frac{k.\left(b+2d\right)}{k.\left(b+d\right)}=\frac{b+2d}{b+d}\)
\(=>\frac{b+2d}{b+d}=\frac{b+2d}{b+d}\)(ĐPCM)
, Chờ tí mk làm câu b
Ta có :\(\frac{a}{b}=\frac{c}{d}\)
\(\implies\)\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\left(1\right)\) \(\implies\) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(2\right)\)
Từ (1);(2)\(\implies\) \(\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)
\(\implies\) \(\left(a+2c\right).\left(b+d\right)=\left(b+2d\right).\left(a+c\right)\)
a, \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{\left(a-c\right)^4}{\left(b-d\right)^4}\) (1)
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{5a^4}{5b^4}=\frac{7c^4}{7d^4}=\frac{5a^4+7c^4}{5b^4+7d^4}\)(2)
Từ (1) và (2) => đpcm
b, \(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (3)
\(\frac{a}{b}=\frac{c}{d}=\frac{3c}{3d}=\frac{a-3c}{b-3d}\) (4)
Từ (3) và (4) => đpcm
c, làm giống câu a
a) ta có \(\frac{a}{b}=\frac{c}{d}=\frac{a+2c}{b+2d}\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-3c}{b-3d}\left(2\right)\)
(1) và (2) => \(\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\)
Ta có: \(\hept{\begin{cases}VT=\left(a+2c\right)\left(b+d\right)=ab+ad+2bc+2cd\\VP=\left(a+c\right)\left(b+2d\right)=ab+2ad+bc+2cd\end{cases}}\)
Từ \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow VT=VP\Leftrightarrowđpcm\)