Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6sin^4x-2cos^4x=1\Leftrightarrow6sin^4x-2\left(1-sin^2x\right)^2-1=0\)
\(\Leftrightarrow6sin^4x-2\left(sin^4x-2sin^2x+1\right)-1=0\)
\(\Leftrightarrow4sin^4x+4sin^2x-3=0\)
\(\Leftrightarrow\left(2sin^2x+3\right)\left(2sin^2x-1\right)=0\)
\(\Leftrightarrow2sin^2x=1\Rightarrow sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}sin^4x=\frac{1}{4}\\cos^4x=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow C=\frac{1}{4}+3.\frac{1}{4}=1\)
\(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{7}}{4}\)
\(tana=\frac{sina}{cosa}=-\frac{3\sqrt{7}}{7}\) ; \(cota=\frac{1}{tana}=-\frac{\sqrt{7}}{3}\)
\(A=\frac{-\frac{6\sqrt{7}}{7}+\sqrt{7}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{7}}=\frac{4}{5}\)
a/ \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(\Rightarrow A=4\left(-\frac{1}{2}\right)^2-2\left(-\frac{\sqrt{3}}{2}\right)+3\left(-\frac{1}{2}\right):\left(-\frac{\sqrt{3}}{2}\right)=1+2\sqrt{3}\)
b/ Bạn viết lại biểu thức, ko biết đâu là tử đâu là mẫu, và góc \(\alpha\) đề có cho nằm ở khoảng nào ko?
Chắc là \(0< a< \dfrac{\pi}{2}\)?
\(0< a< \dfrac{\pi}{2}\Rightarrow sina;cosa>0\)
\(\left\{{}\begin{matrix}sina=\sqrt{3}cosa\\sin^2a+cos^2a=1\end{matrix}\right.\) \(\Rightarrow\left(\sqrt{3}cosa\right)^2+cos^2a=1\)
\(\Rightarrow4cos^2a=1\Rightarrow cosa=\dfrac{1}{2}\)
\(\Rightarrow sina=\sqrt{3}cosa=\dfrac{\sqrt{3}}{2}\)
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2⋅169=817.
b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinα−cos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)−(tan2α+1).
Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)−(2+1)=3+823(2−1).
\(\dfrac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow tana< 0\)
\(tana-3cota=2\Leftrightarrow tana-\dfrac{3}{tana}=2\)
\(\Leftrightarrow tan^2a-2tana-3=0\Rightarrow\left[{}\begin{matrix}tana=-1\\tana=3>0\left(loại\right)\end{matrix}\right.\)
\(\dfrac{1}{cos^2a}=1+tan^2a\Rightarrow cosa=-\sqrt{\dfrac{1}{1+tan^2a}}=-\dfrac{\sqrt{2}}{2}\)
\(sina=cosa.tana=\dfrac{\sqrt{2}}{2}\)