Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
mik nghĩ câu a.b. bn làm đc,
c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân) (1)
xét 2 tam giácvuông BDM và ta giác vuông CDM
MD chung,
MB=MC(trung tuyến AM)
=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)
=>DM là trung tuyến của BC (2)
từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng
mik làm sai ở đâu thì nhắc nha
Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .
Do đó E P Q ^ + P C K ^ = 90 0 , nên P K ⊥ A C .
Lời giải:
Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ $(a>0$)
Áp dụng hệ thức lượng trong tam giác vuông ta có:
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$
$\Rightarrow \frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{16^2}$
$\Rightarrow \frac{25}{144a^2}=\frac{1}{16^2}$
$\Rightarrow a=\frac{20}{3}$
Áp dụng định lý pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{(4a)^2-16^2}=\sqrt{(\frac{80}{3})^2-16^2}=\frac{64}{3}$ (cm)
a: \(AH=\sqrt{BH\cdot CH}=6\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{\sqrt{13}}\)
nên \(\widehat{B}=56^0\)
b: Xét ΔAHB vuông tại H và ΔCEH vuông tại E có
\(\widehat{BAH}=\widehat{C}\)
Do đó: ΔAHB\(\sim\)ΔCEH
Suy ra: \(\dfrac{AH}{CE}=\dfrac{BH}{EH}\)
hay \(AH\cdot HE=CE\cdot BH\)