Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)
\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AH=\sqrt{12}\approx3\)
Độ dài BC là :3+2=5
Chu vi của tam giác ABC la:\(4+5+5\approx14\)
Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)
\(\Rightarrow20^2=12^2+HC^2\)
\(\Rightarrow HC^2=20^2-12^2\)
\(\Rightarrow HC^2=400-144=256\)
\(\Rightarrow HC=16\left(cm\right)\)
Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)
\(\Rightarrow AB^2=5^2+12^2\)
\(\Rightarrow AB^2=25+144=169\)
\(\Rightarrow AB=13\left(cm\right)\)
Vậy CV tam giác ABC là
\(20+5+16+13=54\left(cm\right)\)
A B C H
XÉT \(\Delta BAH\)VUÔNG TẠI H
CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)
THAY\(5^2=BH^2+4^2\)
\(\Rightarrow BH^2=5^2-4^2\)
\(\Rightarrow BH^2=25-16\)
\(\Rightarrow BH^2=9\)
\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)
TA CÓ \(BH+HC=BC\)
THAY\(3+12=BC\)
\(BC=15\left(cm\right)\)
XÉT \(\Delta HAC\)VUÔNG TẠI H
CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)
THAY\(AC^2=4^2+12^2\)
\(AC^2=16+144\)
\(AC^2=160\)
\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)
CHU VI \(\Delta ABC\)LÀ
\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)
Hình bạn tự vẽ nhé
AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H
Áp dụng định lí Pytago cho tam giác vuông AHB ta được :
AB2 = AH2 + BH2
BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta được :
AC2 = AH2 + HC2
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)
H thuộc BC => BC = BH + HC = 3 + 12 = 15cm
Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm
#Sai thì bỏ qua nhé xD
AD định lý Pytago vào trong tam giác ABH vuông tại H ta có: BH2 = AB2 - AH2=25-16=9
Suy ra BH=3(cm)
Ta có BC=BH+CH =12+3=15(cm)
AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160
Suy ra:AC=12,65(cm;tương đương)
Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:
AH²+BH²=AB²
AH²=AB²−BH²
AH²=52−32
⇒AH²=16
⇒AH=4(cm)
Ta có:
BH+HC=BC
⇒HC=BC−BH
⇒HC=8−3
⇒HC=5(cm)
Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:
AH²+HC²=AC²
42+52=AC²
⇒AC²=41
⇒AC=√41(cm)
Vậy HC = 5 cm, AC = √41 cm
#Tuyên#
A H B C
Xét Tam giác ABH vuông tại H :
Áp dụng định lí pitago ta có :
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH^2=5^2-4^2=9\)
\(\Rightarrow BH=\sqrt{9}=3cm\)
Mà BC = BH+HC
\(\Rightarrow BC=3+12=15cm\)
Xét tam giác AHC vuông tại H :
áp dụng định lí pitago ta có :
\(AC^2=HC^2+AH^2\)
\(\Leftrightarrow AC^2=160\)
\(\Leftrightarrow AC=\sqrt{160}=4\sqrt{10}cm\approx12,6cm\)
\(\Rightarrow\)Chu vi tam giác ABC là :
AB+BC+AC \(\approx\)\(32,6cm\)
Vậy ...
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm