K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

a)XÉt tam giác HBM và tam giác KCM có:

   MB = Mc ( M là TĐ của BC)

   góc BMH = góc CMK ( 2 góc đối đình)

   MK = MH ( gt)

do đó : tam giác HBM = tam giác KCM (c-g-c)

Bài 5: 

a: Xét ΔHBM và ΔKCM có

MH=MK

\(\widehat{HMB}=\widehat{KMC}\)

MB=MC

Do đó: ΔHBM=ΔKCM

b: Xét tứ giác BHCK có

M là trung điểm của CB

M là trung điểm của HK

Do đó: BHCK là hình bình hành

Suy ra: CK//BH

hay CK\(\perp\)AC

16 tháng 7 2019
Cho mik hỏi bạn đã giải đc bào này chưa ak nếu bạn giải đc thì bạn cho mik xin cách làm của bài 1 ak Mik cảm ơn
25 tháng 2 2018

Bài 3 :

A B C H K I

Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K

Ta có :AH + HB = AB 

          AK + KC = AC 

mà AB = AC ( tam giác ABC cân tại A)

=> AH + HB = AK + KC

mà  CH và Bk lần lượt là trung trực của AB ,AC 

=> AH = HB = AK = KC

Xét tam giác AHI và tam giác AKI có 

AHI = AKI = 90

AH = AK ( cmt )

AI : cạnh chung 

=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )

=> ^HAI = ^KAI ( 2 góc tương ứng )

=> AI là tia phân giác của ^A

Vậy AI là tia phân giác của ^A

25 tháng 2 2018

Bài 1 

  A B C D E H K

a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB

Ta có : ^ABC + ^ABD = 180 (kề bù )

           ^ACB + ^ ACE = 180 ( kề bù )

mà ^ABC = ^ACB 

=> ^ABD = ^ ACE 

Xét tam giác ABD và tam giác ACE có :

AB =AC ( tam giác ABc cân tại a )

^ABD = ^ACE ( cmt )

BD = CE ( gt)

=> tm giác ABD = tam giác ACE ( c.g.c)

=> ^ADB = ^AEC ( 2 góc tương ứng ) 

hay ^HDB = ^KEC 

Xét tam giác HBD và tam gisc KEC có :

^DHB = ^EKC = 90 

BD =  CE (gt)

HDB = KEc ( cmt )

=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )

=> HB = Ck ( 2 canh tương ứng )

Vậy HB = Ck

b,Xét tam giác ABH và tam giác ACk có 

AHB = AKC = 90

HB = CK ( cmt )

AB = AC 

=> tam giác ABH = tam giác  ACK ( anh huyền - canh góc vuồng )

Vậy tam giác ABH =tam giác ACK

3 tháng 5 2019

a, xét tam giác AEC và tam giác ADB có : AB = AC do tam giác ABC cân tại A (gt)

góc AEC = góc ADB= 90 do ... 

góc A chung

=> tam giác AEC = tam giác ADB (ch - gn)

3 tháng 5 2019

xamqdFY.png

a.

Xét \(\Delta AEC\) và  \(\Delta ADB\) có:AB=AC(cạnh tam giác cân);\(\widehat{AEC}=\widehat{ADB}=90^0\);\(\widehat{A}\) chung

\(\Rightarrow\Delta AEC=\Delta ADB\left(c.g.c\right)\)

b.

Do trung tuyến CD và BM cắt nhau tại I nên I là trọng tâm.

\(\Rightarrow CI=\frac{2}{3}CD\)

Áp dụng định lý py-ta-go vào tam giác vuông BDC ta có:

\(BC^2=BD^2+DC^2\)

\(\Rightarrow CD^2=BC^2-BD^2\)

\(\Rightarrow CD^2=100-64\)

\(\Rightarrow CD=6\) vì \(CD>0\)

\(\Rightarrow CI=\frac{2}{3}\cdot6=4\)

c

Xét \(\Delta BEC\) và \(\Delta BDC\) có:\(\widehat{BEC}=\widehat{BDC}=90^0\);BC chung;\(\widehat{EBC}=\widehat{DCB}\)

\(\Rightarrow\Delta BEC=\Delta BDC\left(c.g.c\right)\Rightarrow BE=DC\Rightarrow AE=AD\)

Xét \(\Delta HAE\) và  \(\Delta HAD\) có:\(\widehat{AEH}=\widehat{ADH}=90^0;AH\)chung;\(AE=AD\)

\(\Rightarrow\Delta HAE=\Delta HAD\left(c.g.c\right)\Rightarrow AH\) là đường phân giác.

Mặt khác tam giác ABC cân nên AH đồng thời là đường cao (nếu bạn chưa học cái này thì có thể CM vuông góc bằng cách tạo giao điểm giữa AH và BC)