K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

TA XÉT 2 TAM GIÁC BDC VÀ TAM GIÁC CEB CÓ

BC LÀ CẠNH HUYỀN CHUNG

GÓC E=GÓC D

EC=BD

=>TAM GIÁC BDC = TAM GIÁC CEB (CH GN)

B,XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ

GÓC E= GÓC D

A CHUNG

GÓC B=GÓC C

=>TAM GIÁC ADB = TAM GIÁC AEC (GCG)

=>AE=AD=>TAM GIÁC ADE CÂN TẠI A

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:a) AM=IKb) Tam giác AMI bằng tam giác IKCc) AI=ICBài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IAa) CMR tam giác BID bằng tam giác CIAb) CMR : BD vuông góc với ABc) Qua A kẻ đường thẳng song song với BC cắt đường...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA

a) CMR tam giác BID bằng tam giác CIA

b) CMR : BD vuông góc với AB

c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC

d) CMR: AB là tia phân giác cuả góc DAM

Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC

a) C/M: tam giác AKB bằng tam giác AKC

b) C/M: AK vuông góc với BC

c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

 

3
21 tháng 2 2017

la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))

6 tháng 12 2017

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:

a) AM=IK

b) Tam giác AMI bằng tam giác IKC

c) AI=IC

Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR

a) BD= CE

b) tam giác OEB bằng tam giác ODC

c) AO là tia phân giác cua góc BAC

Được cập nhật 41 giây trước (20:12)

8 tháng 4 2017

Bạn tự vẽ hình

a Xét tam giác ABD và tam giác ACE có

góc BEC= góc CDB= 90 độ

AB=AC

AH chung

suy ra tam giác ABD= tam giác ACE(c.g.c)

b) Vì tam giác ABD= tam giác ACE( theo a)

 suy ra BD=CEhay BH=CH( 2canhj tương ứng)

Xét tam giác BHC có

BH= CH

suy ra tam giác BHC cân tại H

5 tháng 12 2018

mình có 1 tấm ảnh giống i hít ảnh đại diện của bạn luôn

20 tháng 1 2020

A B C E D M I

a, Xét \(\Delta ABD\) và \(\Delta ACE\) vuông tại \(D;E\) có:

\(AB=AC\left(\Delta ABC-cân\right)\)

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\left(1\right)\)

\(\Rightarrow BD=CE\left(2c.t.ứ\right)\)

b, Từ \(\left(1\right)\Rightarrow AD=AE\left(2c.t.ứ\right)\)

\(\Rightarrow\Delta ADE\) cân tại \(A\)

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

Ta có: \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

c, Từ \(\left(3\right)\left(2\right)\Rightarrow\widehat{AED}=\widehat{ABC}\)

Mà 2 góc đang ở vị trí đồng vị nên:

\(\Rightarrow DE//BC\)

d, Xét \(\Delta EIB\) và \(\Delta DIC\) vuông tại \(E;D\) có:

\(EB=DC\left(AB=AC;EA=DA\right)\)

\(\widehat{EIB}=\widehat{DIC}\left(đ.đỉnh\right)\)

\(\Rightarrow\Delta EIB=\Delta DIC\left(cgv-gnđ\right)\left(4\right)\)

e, Xét \(\Delta BIE\) có:

\(\widehat{BEI}=90^0\)

\(\Rightarrow\Delta BIE\) vuông tại \(E\)

f, Từ \(\left(4\right)\Rightarrow BI=CI\left(2c.t.ứ\right)\left(5\right)\)

Ta có: \(BM=CM\left(M-là-t.điểm-BC\right)\)

\(\Rightarrow D\in\) đường trung trực \(BC\left(6\right)\)

Từ \(\left(5\right)\Rightarrow I\in\) đường trung trực \(BC\left(7\right)\)

Và \(AB=AC\Rightarrow A\in\) đường trung trực \(BC\left(8\right)\)

Từ \(\left(6\right)\left(7\right)\left(8\right)\Rightarrow A;I;M\) thẳng hàng.

P/s: Sửa đề Gọi \(M\) là trung điểm \(BC\)

Nếu nhưu gọi \(D\) thì nó bị trùng rồi bạn.

Có gì không hiểu thì hỏi ^_^

a: Xét ΔABD vuông tại D vaf ΔACE vuông tại E có

AB=AC
góc BAD chung

=>ΔABD=ΔACE

=>AD=AE
b: Xét ΔABC có AD/AC=AE/AB

nên DE//BC

c: Xét ΔIBC có góc ICB=góc IBC

nên ΔIBC cân tại I

d: AB=AC
IB=IC

=>AI là trung trực của BC

=>AI vuông góc BC