Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, C] Đoạn thẳng n: Đoạn thẳng [P, Q] Đoạn thẳng p: Đoạn thẳng [P, A] Đoạn thẳng q: Đoạn thẳng [Q, A] Đoạn thẳng t_1: Đoạn thẳng [A, O] Đoạn thẳng a: Đoạn thẳng [A, I] O = (1.88, 2.28) O = (1.88, 2.28) O = (1.88, 2.28) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm D: Giao điểm đường của i, h Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm E: Giao điểm đường của j, f Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm H: Giao điểm đường của i, j Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm P: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm Q: Giao điểm đường của c, m Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm K: Giao điểm đường của n, t_1 Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g Điểm I: Giao điểm đường của t, g
a) Ta thấy ngay tứ giác BEDC nội tiếp vì \(\widehat{BEC}=\widehat{BDC}=90^o\)
b) Do tứ giác BEDC nội tiếp nên \(\widehat{EDH}=\widehat{BCH}\)
Vậy thì \(\Delta EHD\sim\Delta BHC\left(g-g\right)\Rightarrow\frac{EH}{BH}=\frac{DH}{CH}\Rightarrow BH.DH=EH.CH\)
c) Do góc \(\widehat{EDH}=\widehat{BCH}\) nên \(\widehat{EDA}=\widehat{CBE}\) (Cùng phụ với hai góc trên)
Suy ra \(\widebat{AC}=\widebat{AP}+\widebat{QC}\)
Lại có \(\widebat{AC}=\widebat{AQ}+\widebat{QC}\Rightarrow\widebat{AP}=\widebat{AQ}\Rightarrow AP=AQ\)
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy \(\widehat{AEQ}=\widebat{AQ}+\widebat{PB}=\widebat{AP}+\widebat{PB}=\widebat{AB}=\widehat{AQB}\)
Vậy \(\Delta AEQ\sim\Delta AQB\left(g-g\right)\Rightarrow\frac{AE}{AQ}=\frac{AQ}{AB}\Rightarrow AQ^2=AE.AB\Rightarrow AP^2=AE.AB\)
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên \(AO⊥PQ\)
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó \(\frac{S_1}{S_2}=\frac{\frac{1}{2}PQ.AK}{\frac{1}{2}BC.AI}=\frac{PQ}{2BC}\Rightarrow\frac{AK}{AI}=\frac{1}{2}\)
Lại có \(\Delta ABI\sim\Delta ADK\left(g-g\right)\Rightarrow\frac{AB}{AD}=\frac{AI}{AK}=\frac{1}{2}\)
Xét tam giác vuông ABD có \(\frac{AB}{AD}=\frac{1}{2}\Rightarrow\widehat{BAC}=60^o\Rightarrow\widebat{BC}=60^o\)
Như vậy, khi A thay đổi trên cung lớn BC thì \(\widehat{BAC}=60^o\). Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
\(BC=R\sqrt{3}\)
A B C O I R 30 O
a) Ta thấy ngay tứ giác BEDC nội tiếp vì ^BEC=^BDC=90o
b) Do tứ giác BEDC nội tiếp nên ^EDH=^BCH
Vậy thì ΔEHD∼ΔBHC(g−g)⇒EHBH =DHCH ⇒BH.DH=EH.CH
c) Do góc ^EDH=^BCH nên ^EDA=^CBE (Cùng phụ với hai góc trên)
Suy ra ⁀AC=⁀AP+⁀QC
Lại có ⁀AC=⁀AQ+⁀QC⇒⁀AP=⁀AQ⇒AP=AQ
(Liên hệ giữa dây và cung căng dây)
Vậy tam giác APQ cân tại A.
Ta thấy ^AEQ=⁀AQ+⁀PB=⁀AP+⁀PB=⁀AB=^AQB
Vậy ΔAEQ∼ΔAQB(g−g)⇒AEAQ =AQAB ⇒AQ2=AE.AB⇒AP2=AE.AB
d) Gọi K là giao điểm của AO với PA. Do AP = AQ nên AO⊥PQ
Gọi AI là đường cao hạ từ đỉnh A của tam giác ABC.
Khi đó S1S2 =12 PQ.AK12 BC.AI =PQ2BC ⇒AKAI =12
Lại có ΔABI∼ΔADK(g−g)⇒ABAD =AIAK =12
Xét tam giác vuông ABD có ABAD =12 ⇒^BAC=60o⇒⁀BC=60o
Như vậy, khi A thay đổi trên cung lớn BC thì ^BAC=60o. Ta xét trường hợp tam giác ABC cân tại A, khi đó ta tính được :
BC=R√3
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
A B C D E F H
Cô hướng dẫn nhé.
a) Do ABC là tam giác cân nên AE = AF, AC = AB
Lại có \(\Delta AFC\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow AF.AH=AB.AC\Rightarrow AE.AH=AC^2\)
b) Câu này đề ko đúng. Cô sửa lại \(\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4.AD^2}\)
\(AD.BC=AB.CF\left(=\frac{S_{ABC}}{2}\right)\)
Vậy nên \(VP=\frac{AD^2+\frac{BC^2}{4}}{BC^2.AD^2}=\frac{AD^2+\left(\frac{BC}{2}\right)^2}{CF^2AB^2}=\frac{AD^2+BD^2}{CF^2AB^2}=\frac{AB^2}{CF^2.AB^2}=\frac{1}{CF^2}=VT\)
A B C H K D
Ta có
\(BC=4.BH\Rightarrow BH=\frac{BC}{4}\) (1)
\(S_{BHD}=\frac{1}{2}.BD.BH.sin\widehat{KBC}\) (*)
Xét tg vuông ABC có
\(AB^2=BH.BC\) (Trong 1 tg vuông bình phương 1 cạnh gó vuông bằng tích của hình chiếu của nó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB^2=\frac{BC}{4}.BC=\frac{BC^2}{4}\Rightarrow AB=\frac{BC}{2}\)
Xét tg vuông ABD có
\(\cos\widehat{ABD}=\frac{BD}{AB}\Rightarrow BD=AB.\cos\widehat{ABD}=\frac{BC.\cos\widehat{ABD}}{2}\) (2)
Thay (1) và (2) vào (*)
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{BC}{4}.\sin\widehat{KBC}\) (**)
Xét tg BKC có
\(S_{BKC}=\frac{1}{2}.BK.BC.\sin\widehat{KBC\Rightarrow BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{BK}}\) (***)
Xét tg vuông ABK có
\(AB^2=BD.BK\Rightarrow BK=\frac{AB^2}{BD}=\frac{\frac{BC^2}{4}}{\frac{BC.\cos\widehat{ABD}}{2}}=\frac{BC}{2.\cos\widehat{ABD}}\) Thay giá trị của BK vào(***) ta có
\(BC.\sin\widehat{KBC}=\frac{2.S_{BKC}}{\frac{BC}{2.\cos\widehat{ABD}}}=\frac{4.S_{BKC}.\cos\widehat{ABD}}{BC}\) (3)
Thay (3) vào (**) ta có
\(\Rightarrow S_{BHD}=\frac{1}{2}.\frac{BC.\cos\widehat{ABD}}{2}.\frac{4.S_{BKC}.\cos\widehat{ABD}}{4.BC}=\frac{1}{4}.S_{BKC}.\cos^2\widehat{ABD}\) (dpcm)
Akai Haruma giải giúp em câu a thôi được không ạ, em cảm ơn nhiều.
tự vẽ hình nhé
AC2+BC2-AB2=AK2+KC2+BK2+KC2+2BK.CK-AK2-BK2
=2KC2+2BK.CK=2KC(KC+BK)
AB2+BC2-CA2=BK2+AK2+BK2+KC2+2BK.CK-AK2-KC2
2BK2+2BK.CK=2BK(BK+CK)
➜AC2+BC2-AB2/AB2+BC2-CA2=2KC(KC+BK)/2BK(BK+CK)
=KC/BK