Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có:MP-MP< MN< MN+MP}\)
\(5-2< MN< 5+2\)
\(3< MN< 7\)
\(\text{Vì NP là 1 số nguyên tố}\)
\(\Rightarrow NP=5\left(cm\right)\)
Xét tam giác MNP có MN+MP=6+1=7(cm)
Dựa vào bất đẳng thức tam giác =>NP<7cm
Mà NP là số nguyên tố
=>NP thuộc {2;3;5}
Lại có 2+MP=2+1=3<6=MN (ko thỏa mãn BĐT tam giác)
3+MP=3+1=4<6=MN (ko thỏa mãn BĐT tam giác)
5+MP=5+1=6=MN (ko thỏa mãn BĐT tam giác)
=>ko tồn tại tam giác MNP có độ dài như vậy
hay ko tìm được độ dài cưa NP
Bạn xem lại đề đi nhé! ^_^
Bạn tự vẽ hình nha :)
b) Do G và H là trung điểm của NM và MP
=> GH là đường trung bình của tam giác MNP
=> GH // NP và GH = \(\frac{NP}{2}\)
=> GH = \(\frac{4}{2}=2\left(cm\right)\)
Vậy GH = 2 cm
Ta có NP2 = 4.4=16
MN2+MP2 = 2,42 + 3,22 = 16
suy ra MN2+MP2=NP2
suy ra tam giác MNP vuông tại M
M N P G H
Vì G là trung điểm của MN, H là trung điểm của MP
suy ra GH = NP : 2 = 2(cm)
cho tam giác mnp có mn= 4cm np=1cm và độ dài của canhk mp là một số nguyên (cm). tính độ dài cạnh mp
có : MN+NP < MP < MN-NP ( Bất đẳng thức tam giác )
4+1 < MP < 4-1
5 < MP < 3
=> MP =4 ( cm)
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 - 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Theo bất đẳng thức tam giác ABC ta có:
AC + BC > AB > AC - BC
hay 7 + 1 > AB > 7 - 1
8 > AB > 6
=> AB = 7 vì 8 > 7 > 6.
Vậy AB = 7cm.
Vì AB = AC = 7cm nên tam giác ABC là tam giác cân và cân tại A.
Theo bđt tam giác thì cạnh NP phải lớn hơn 4 và nhỏ hơn 12.
a) độ dài cạnh là số tự nhiên lẻ nên có thể nhận 5,7,9,11
B) Chia hết cho 4 nên là 8
Bạn tự vẽ hình nhá :v
a) Ta có : MP - NP < MN < MP + NP
=> 6 < MN < 8
Vì độ dài của đoạn MN là số nguyên nên : MN = 7 ( cm )
b) MN = NP = 7 ( cm )
Nên \(\Delta MNP\) là tam giác cân tại M.
a) Ta có:
MP−NP<MN<MP+NP
⇒6<MN<8⇒6<MN<8
Vì độ dài MNMN là số nguyên nên:
MN=7(cm)MN=7(cm)
b) MN=NP=7(cm)MN=NP=7(cm)
Nên MNPMNP là tam giác cân tại M