Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)MQE và \(\Delta\)MQN có:
ME = MN(gt)
\(\widehat{EMQ}\)=\(\widehat{NMQ}\) (gt)
MQ :CẠNH CHUNG(gt)
Suy ra : \(\Delta\)MQE = \(\Delta\)MQN \(\left(c.g.c\right)\)
=>QE=QN(2 cạnh tươn
b)Xét ▲EMH và ▲ NMP
góc M chung
ME=MN(gt)
góc MEH=góc MNP(▲MNQ=▲MEQ)
⇒▲EMH=▲NMP(g.c.g)
⇒MH=MP
⇒▲MHP cân tại M
a) Xét \(\Delta\)MEQ và MNQ có :
^M1 = ^M2 (gt)
ME = MN ( gt)
MQ : cạnh chung
=> \(\Delta\)MEQ và MNQ (c-g-c)
=> EQ = NQ ( 2 cạnh tương ứng )
b) Vì \(\Delta\)MEQ và MNQ (cmt)
=> ^MNQ = ^MEQ ( 2 góc tương ứng )
Mà \(\left\{{}\begin{matrix}\widehat{HNQ}+\widehat{MNQ}=180^o\\\widehat{PEQ}+\widehat{MEQ}=180^o\end{matrix}\right.\)=> \(\widehat{HNQ}=\widehat{PEQ}\)
Xét \(\Delta\)HNQ và \(\Delta\)PEQ có :
\(\widehat{HNQ}=\widehat{PEQ}\)(cmt)
NQ = EQ (cmt )
\(\widehat{NQH}=\widehat{PQE}\) (2 góc đối đỉnh )
=> \(\Delta\)HNQ và \(\Delta\)PEQ( g - c - g)
=> NH = EP ( 2 cạnh t/ứng)
Mà MN = ME (gt)
=> MH = MP
Xét \(\Delta\)EMH và \(\Delta\)NMP có :
^M : góc chung
MH = MP ( cmt)
MN = ME (gt )
=> \(\Delta\)EMH và \(\Delta\)NMP (c - g - c)
c) Vì \(\Delta\)HNQ và \(\Delta\)PEQ
\(\Delta\)
Hình bạn tự vẽ nha
a, Xét tam giác MQN và tam giác MQE có :
\(\widehat{NMQ}\) = \(\widehat{EMQ}\) ( vì MQ là tia phân giác )
MQ : cạnh chung
MN = ME (giả thiết )
Vậy tam giác MQN = tam giác MQE (c.g.c )
a, xét tam giác mnq và tam giác meq có
góc nmq=góc qme ( gt)
mn=me(gt)
mq chung
=> tam giác mnq= tam giác meq(c.g.c)
=>NQ = QE(2 cạnh tg ứng)
cảm ơn bạn nhìu nha!!!!