Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C P A' B' C'
Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)
\(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được
\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)
Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'
<=> P là tâm đường tròn nội tiếp tam giác ABC
dòng này tôi viết vì có việc nhé ko phải là tl linh tinh mong thông cảm và cũng ko phải là nội dung bài làm nhé.
Câu hỏi của Lưu Văn Dũng - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT AM-GM có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)
Dấu "=" xảy ra khi x=y=z
\(\Rightarrow\) tam giác ABC là tam giác đều.