Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
1. Do ΔABC đều, BE và CF là tia phân giác của góc B, góc C nên ∠B1 = ∠B2 = ∠C1 = ∠C2 ⇒ AE = AF = BF = CE
∠FAB = ∠B1 => AF//BE
2. (1,0 điểm)
Tương tự câu 1) ta có AE//CF nên tứ giác AEOF là hình bình hành mà →AE = AF => →AE = AF nên tứ giác AEOF là hình thoi.
DOFN và DAFM có ∠FAE = ∠FOE (2 góc đối của hình thoi)
∠AFM = ∠FNO (2 góc so le trong)
=> ΔAFM đồng dạng với ΔONF (g-g)
⇒ AF/ON = AM/OF ⇔ AF.OF = AM.ON
mà AF = OF nên AF² = AM.ON
3. (1,0 điểm)
Có ∠AFC = ∠ABC = 600 và AEOF là hình thoi => ΔAFO và ΔAEO là các tam giác đều => AF=DF=AO
=> AO² = AM.MO
⇔ AM/AO = AO/ON và có ∠OAM = ∠AOE = 600 => ΔAOM và ΔONA đồng dạng.
=> ∠AOM = ∠ONA
Có 60º = ∠AOE = ∠AOM + ∠GOE = ∠ANO + GAE
=> ∠GAE = ∠GOE
mà hai góc cùng nhìn GE nên tứ giác AGEO nội tiếp
Mk vẽ hình r nhưng ko bít đăng !
A B C N M E D H I O 1 1 1
1. Do BD , CE là đường cao của tam giác ABC nên \(\widehat{BDC}=90^o\)và \(\widehat{BEC}=90^o\)
Vì E , D nằm cùng 1 phía trên nửa mặt phẳng có bờ là đường thẳng BC nên tứ giác BCDE nội tiếp trong đường trong đường kính BC
2. Trên cung tròn đường kính BC ta có : \(\widehat{D_1}=\widehat{C_1}\)( cùng chắc cung \(\widebat{BE}\))
Trên đường tròn (O) , ta có : \(\widehat{M_1}=\widehat{C_1}\)( cùng chắn cung \(\widebat{BN}\))
Suy ra : \(\widehat{D_1}=\widehat{M_1}\Rightarrow MN//DE\)( do có 2 góc đồng vị bằng nhau )
3. Gọi H là trực tâm của tam giác ABC và I là trung điểm của BC.
Xét tứ giác ADHE có \(\widehat{AEH}=90^o\)( do CE vuông AB )
\(\widehat{ADH}=90^o\)( do BD vuông AC )
\(\Rightarrow\widehat{AEH}+\widehat{ADH}=180^O\)nên tứ giác ADHE nội tiếp đường tròn đường kính AH
Vậy đường tròn ngoại tiếp tam giác ADE là đường tròn đường kính AH , có bán kính bằng \(\frac{AH}{2}\)
Kẻ đường kính AK của đường tròn (O) , ta có :
\(\widehat{KBA}=90^o\)( góc nội tiếp chắn nửa đường tròn (O) )
\(\Rightarrow KB\perp AB\)
mà \(CE\perp AB\left(gt\right)\)nên KB // CH (1)
Chứng minh tương tự ta có KC // BH (2)
Từ (1) và (2) => BKCH là hình bình hành
Vì I là trung điểm của BC suy ra I cũng là trung điểm của KH . Mặt khác ta có O là trung điểm của AK nên \(OI=\frac{AH}{2}\). Do BC cố định nên I cố định suy ra Oi không đổi
Vậy khi điểm A di động trên cung lớn BC thì độ dài bán kính đường tròn ngoại tiếp tam giác ADE luôn không đổi
Do tứ giác BCDE nội tiếp nên \(\widehat{ADE}=\widehat{ABC}\)( tính chất góc ngoài bằng góc trong đối diện ) (3)
Xét 2 tam giác ADE và ABC ta có \(\widehat{DAE}=\widehat{BAC}\), kết hợp với (3) ta có 2 tam giác này đồng dạng
\(\Rightarrow\frac{S_{\Delta ADE}}{S_{\Delta ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\cos\widehat{DAB}\right)^2=\left(\cos\widehat{CAB}\right)^2\)
Do BC cố định nên cung nhỏ BC không đổi suy ra số đô góc CAB không đổi . Vậy để SADE đạt giá trị lớn nhất thì SABC cũng phải đạt giá trị lớn nhất . Điều này xảy ra khi và chỉ khi A là điểm chính giữa cung lớn BC
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
A B C D O E F K M
a) Ta thấy: Điểm K nằm trên đường tròn ngoại tiếp \(\Delta\)BDE nên tứ giác DKBE nội tiếp đường tròn
=> ^BEK = ^BDK (2 góc nội tiếp cùng chắn cung BK) hay ^AEK = ^FDK
Mà tứ giác DKFC nội tiếp đường tròn => ^FDK = ^FCK
Nên ^AEK = ^FCK hay ^AEK = ^ACK => Tứ giác AKCE nội tiếp đường tròn
=> ^KAE = ^KCD (Cùng bù ^KCE) hay ^KAB = ^KCD
Do tứ giác BKDE nội tiếp đường tròn nên ^KDE = ^KBA hay ^KBA = ^KDC
Xét \(\Delta\)DKC và \(\Delta\)BKA có: ^KAB = ^KCD; ^KBA = ^KDC => \(\Delta\)DKC ~ \(\Delta\)BKA (g.g)
=> \(\frac{KC}{KA}=\frac{KD}{KB}\Rightarrow\frac{KC}{KD}=\frac{KA}{KB}\).
Đồng thời ^DKC = ^BKA => ^DKC + ^BKC = ^BKA + ^BKC => ^BKD = ^AKC
Xét \(\Delta\)KBD và \(\Delta\)KAC có: ^BKD = ^AKC; \(\frac{KC}{KD}=\frac{KA}{KB}\)=> \(\Delta\)KBD ~ \(\Delta\)KAC (c.g.c)
=> ^KBD = ^KAC hoặc ^KBF = ^KAF => Tứ giác AKFB nội tiếp đường tròn
=> ^BKF = ^BAF (2 góc nội tiếp chắn cung BF) => ^BKF = ^BAC = ^BDC (Do ^BAC và ^BDC cùng chắn cung BC) (1)
Ta có: ^BDC = ^FDC = ^FKC (Cùng chắn cung FC) (2)
Xét \(\Delta\)BMC: ^BMC + ^MBC + ^MCB = 1800. Mà ^MBC = ^BAC; ^MCB = ^BDC (Góc tạo bởi tiếp tuyến và dây cung)
Nên ^BAC + ^BDC + ^BMC = 1800 (3)
Thế (1); (2) vào (3) ta được: ^BKF + ^FKC + ^BMC = 1800 => ^BKC + ^BMC = 1800
=> Tứ giác BKCM nội tiếp đường tròn (đpcm).
b) Ta có: ^BKF = ^BDC (cmt) => ^BKF = ^BDE = ^BKE (Do tứ giác DKBE nội tiếp đường tròn)
Mà 2 điểm F và E nằm cùng phía so với BK => 3 điểm K;F;E thẳng hàng. Hay F nằm trên KE (*)
Mặt khác: ^BKF = ^CKF (Vì ^BKF = ^BAC; ^CKF = ^BDC; ^BAC = ^BDC)
=> ^BKE = ^CKE (Do K;F;E thẳng hàng) => ^KE là phân giác của ^BKC (4)
Xét tứ giác BKCM nội tiếp đường tròn: ^MBC = ^MKC; ^MCB = ^MKB
Lại có: \(\Delta\)BCM cân ở M do MB=MC (T/c 2 tiếp tuyến giao nhau) => ^MBC=^MCB
Từ đó: ^MKC = ^MKB => KM là phân giác của ^BKC (5)
Từ (4) và (5) suy ra: 3 điểm K;M;E thẳng hàng. Hoặc M nằm trên KE (**)
Từ (*) và (**) => 3 điểm E;M;F thẳng hàng (đpcm).
Bạn mở trong đường link này sẽ có https://moon.vn/hoi-dap/cho-tam-giac-deu-abc-noi-tiep-trong-duong-tron-tam-o-goi-mnp-lan-luot-la-trung-diem--665623
A B C F G N O E
( Hình hơi bị lệch một xíu, tam giác không chính xác lắm nha)
a) Do tam giác ABC đều và M, N lần lượt là trung điểm của \(AB,BC\Rightarrow\hept{\begin{cases}OM\perp AB\\ON\perp BC\end{cases}\Rightarrow\widehat{OMB}=\widehat{ONB}=90^o}\)
Xét tứ giác BMON có: \(\widehat{OMB}+\widehat{ONB}=180^o\) suy ra tứ giác BMON là tứ giác nội tiếp (tứ giác cỏ tổng 2 góc đối bằng 180o
b) Do O là trọng tâm tam giác ABC(giả thiết) suy ra \(ON=\frac{OA}{2}=\frac{R}{2}\)( tính chất đường trung tuyến).
Mặt khác, \(OG=ON+NG\Rightarrow NG=OG-ON=R-\frac{R}{2}=\frac{R}{2}\)
Vậy \(NO=NG=\frac{R}{2}\left(đpcm\right)\)
c) Gọi \(E=EC\Omega PN\) ta có: \(OC\perp AB\) (do tam giác ABC đều); \(NO//AB\)( NP là đường trung bình của tam giác ABC)
\(\Rightarrow OC\perp NP\) tại E => tam giác OEF vuông tại E.
Xét tam giác ONC vuông tại N có đường cao NE ta có: \(ON^2=OE.OC\Rightarrow OE=\frac{ON^2}{OC}=\frac{R}{4}\) (hệ thức lượng)
Xét tam giác vuông OEF có: \(\sin\widehat{OFE}=\sin\widehat{OFP}=\frac{OE}{OF}=\frac{R}{\frac{4}{R}}=\frac{1}{4}\Rightarrow\widehat{OFP}\approx14^O28'\)