K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2016

b. Ta co goc EMD + goc EMH =90 mà DEM = HEM nen EMD = EMH. Xet 2 tam giac DEM va HEM có EH canh chung, goc EMH =EMD, DEM=HEM

C. EF=EK suy ra tam giac EFK can tai E. EM la tia phan giác, cung là đường cao, ta lại có ED vuong góc voi EK. Suy ra M là trực tâm. Mà MH vuong goc EF. Suy ra KMH thang hang

 

 

 

28 tháng 4 2019

a, Xét 2 tam giác vuông DEM và HEM có:

             ME cạnh chung

            \(\widehat{DEM}\)=\(\widehat{HEM}\)(gt)

=> tam giác DEM=tam giác HEM(CH-GN)

b, vì tam giác DEM=tam giác HEM(câu a) suy ra MD=MH(2 cạnh tương ứng)

c, trong tam giác FKE có: FD,KH là 2 đường cao cắt nhau tại M

=> K,M,H thẳng hàng

D E F M H K

Câu C của bạn làm đúng ko vậy

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

16 tháng 5 2022

câu a bị lx

16 tháng 5 2022

lên nhanh thế cj

 

a: Xét ΔDEM vuông tại E và ΔDHM vuông tại H có

DM chung

góc EDM=góc HDM

=>ΔDEM=ΔDHM

b: Xét ΔMEK vuông tại E và ΔMHF vuông tại H có

ME=MH

góc EMK=góc HMF

=>ΔMEK=ΔMHF

=>MK=MF

=>ΔMKF cân tại M

c: KM+ME=EM+MF=EF<KF

a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có

EC chung

\(\widehat{DEC}=\widehat{HEC}\)

Do đó; ΔEDC=ΔEHC

b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có 

CD=CH

\(\widehat{DCK}=\widehat{HCF}\)

Do đó; ΔDCK=ΔHCF

Suy ra: CK=CF

15 tháng 5 2022

a, Xét Δ DCE và Δ HCE, có :

EC là cạnh chung

\(\widehat{CDE}=\widehat{CHE}=90^o\)

\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))

=> Δ DCE = Δ HCE (g.c.g)

=> DC = HC

b, Xét Δ DCK và Δ HCF, có :

DC = HC (cmt)

\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)

=> Δ DCK = Δ HCF ( ch - cgn)

=> CK = CF

=> Δ CKF cân tại C

9 tháng 3 2020

D K H E I F O

tam giác DEF cân tại D suy ra DE=DF, góc DEF = góc DFE

Xét tam giác KEF và tam giác HFE

có EF chung

góc EKF=góc EHF = 900

góc KEF=góc  HFE  (CMT)

suy ra  tam giác KEF và tam giác HFE (cạnh huyền-góc nhọn)

suy ra EK = HF

mà DK+KE=DE, DH+HF=DF

lại có DE=DF (CMT)

suy ra KD=DH

b) xét tam giác DKO và tam giác DHO

có DO chung

góc DKO = góc DHO = 900

DK = DH (CMT)

suy ra tam giác DKO = tam giác DHO ( cạnh huyền-cạnh góc vuông)

suy ra góc KDO = góc HDO

suy ra DO là tia phân giác của góc EDF  (1)

c) Vì DK = DH suy ra tam giác DKH cân tại D

suy ra góc DKH= góc DHK

suy ra góc DKH+ góc DHK + góc KDH = 1800

suy ra góc DKH=(1800 - góc KDH) :2  (2) 

Tam giác DEF cân tại D

suy ra góc DEF + góc DFE + góc EDF = 1800

suy ra góc DEF = (1800 - góc KDH) :2 (3)

Từ (2) và (3) suy ra góc DKH = góc DEF

mà góc DKH đồng vị với góc DEF 

suy ra KH // EF

d) Xét tam giác DEI và tam giác DFI

có DE = DF  (CMT)

DI chung

EI = IF 

suy ra tam giác DEI = tam giác DFI (c.c.c)

suy ra góc EDI = góc FDI

suy ra DI là tia phân giác của góc EDF  (4)

Từ (1) và (4) suy ra DO trùng DI

hay ba điểm D, O, I thẳng hàng.