Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB
a. Xét tam giác ABC cân tại A:
Ta có: DE // BC ⇒ góc AED= góc ACB (đồng vị)
⇒ góc ADE= góc ABC ( đồng vị)
Mà: góc ABC= góc ACB ( tam giác ABC cân tại A)
⇒ Góc ADE= góc AED
Vậy ΔADE cân tại A (đpcm)
b. Xết ΔACD và ΔABE
Ta có: AD=AE ( ΔADE cân tại A)
góc BAC: chung
AC=AB ( ΔABC cân tại A)
Vậy ΔADE=ΔABE (c.g.c)
⇒ góc ACD= góc ABE
Ta có: góc ACD+ góc DCB = góc ACB
góc ABE + góc EBC = góc ABC
Mà góc ACD= góc ABE (cmt)
Góc ACB= góc ABC (gt)
⇒ Góc DCB= góc EBC
Vậy ΔOBC cân tại O (đpcm)
Chúc bạn học tốt nha :)
A B C D E K
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K
Cm: a) Ta có : AD + DB = AB
AE + EC = AC
và AB = AC (gt) ; AD = DE (gt); AE = EC (gt)
=> AD = DE = AE = EC
Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc A: chung
AE = AD (cmt)
=> t/giác ABE = t/giác ACD (c.g.c)
b) Ta có: t/giác ABE = t/giác ACD (Cmt)
=> BE = CD (hai cạnh tương ứng)
c) Ta có: T/giác ABE = t/giác ACD (Cmt)
=> góc ABE = góc ACD (hai góc tương ứng)
Ta lại có: góc ADC + góc CDB = 1800 (kề bù)
góc ADB + góc BEC = 1800 (kề bù)
và góc ADC = góc AEB (vì t/giác ABE = t/giác ACD)
=> góc BDC = góc BEC
Xét t/giác BDK và t/giác CEK
có góc KDB = góc CEK (cmt)
DE = EC (Cmt)
góc DBK = góc ECK (Cmt)
=> t/giác BDK = t/giác CEK (g.c.g)
=> BK = KC (hai cạnh tương ứng)
=> t/giác KEC là t/giác cân tại K