Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Do tam giác ABC vuông tại A nên:
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)
Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 45^o\)
\(\Rightarrow\widehat{C}< 45^o< \widehat{B}\)
Vậy...
2.Áp dụng mối quan hệ giữa cạnh và góc trong tam giác và từ phần 1, ta thấy:
\(\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)
Vậy...
Vì tam giác ABC vuông tại A nên A = 90o
Ta có: Góc A + B + C = 180o
=> Góc C = 180o - (A + B)
= 180o - (90o + 60o) = 180o - 150o = 30o
Vì góc A > góc B > góc C (90o > 60o > 30o)
Nên BC > AC > AB (mối quan hệ giữa góc và cạnh đối diện)
a, Áp dụng định lý tổng ba góc cho tam giác abc, ta có:
a+b+c=180
thay: 100+20+c=180
suy ra: c=180-(100+20)=60
áp dụng đ/l cạnh đối diện vs góc lớn hơn, ta có:
a>c>b suy ra: bc>ab>ac
b, theo câu a, ta có:
ab>ac
mà:ah vuông góc vs ac
suy ra: hc là hình chiếu của ac
hb là hình chiếu của ab
do đó: hb>hc( t/c đường xiên và hình chiếu của chúng)
- các bạn ơi 1 like nha
a) Xét tam giác vuông ABC tại A có:
\(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-90^o=90^o\)
Mà \(\widehat{B}>45^o\Leftrightarrow\widehat{C}< 90^o-45^o\Rightarrow\widehat{C}< 45^o\)(đpcm)
b) Áp dụng mối quan hệ giữa góc và cạnh trong tam giác, ta thấy:
- Do \(\widehat{C}< 45^o< \widehat{B}\Leftrightarrow AB< AC\)
- Do \(\widehat{A}=90^o\Leftrightarrow\widehat{C}< \widehat{B}< \widehat{A}\Leftrightarrow AB< AC< BC\)
Xét \(\Delta ABC\)có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=40^o\)
Áp dụng bất đẳng thức trong tam giác ta có
AB<AC<BC ( 40o<600<800)
Xét tam giác ABC, ta có:
\(\widehat{A}\) +\(\widehat{B}\) +\(\widehat{C}\) = 180 độ ( ĐL Pytago )
=> \(\widehat{C}\) = 180 -(\(\widehat{B}\) + \(\widehat{A}\) )
=180- (60+80) = 180 - 140 = 40độ
Xét tam giác ABC, ta có: \(\widehat{A}\) >\(\widehat{B}\) >\(\widehat{C}\) ( 80>60>40)
=> BC>AC>AB (t/c góc và cạnh đối diện trog tam giác)
Tam giác vuông ABC có : \(\widehat{A}=57^o\); \(\widehat{B}=90^o\)
Nên \(\widehat{C}=180^o-\left(57^o+90^o\right)=33^o\)(Theo định lý tổng 3 góc trong tam giác)
Vì \(33^o< 57^o< 90^o\)hay \(\widehat{C}< \widehat{A}< \widehat{B}\)=> AB < BC < AC (Quan hệ giữa góc và cạnh đối diện)