Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra: BA=BD và IA=ID
Ta có: BA=BD
nên B nằm trên đường trung trực của AD\(\left(1\right)\)
Ta có: IA=ID
nên I nằm trên đường trung trực của AD\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD
â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
góc ABI=góc EBI
=>ΔBAI=ΔBEI
=>IA=IE
mà IE<IC
nên IA<IC
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc B chung
=>ΔBEF=ΔBAC
=>BF=BC
mà BI là phân giác
nên BI vuông góc CF
Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath
a) Xét 2 tam giác vuông: \(\Delta ABM\) và \(\Delta EBM\) có:
\(\widehat{ABM}=\widehat{EBM}\)(gt)
\(BM:\) CHUNG
suy ra: \(\Delta ABM=\Delta EBM\) (CH_GN)
b) \(\Delta ABM=\Delta EBM\)
\(\Rightarrow\)\(AB=EB\) => B thuộc trung trực AE
\(MA=ME\) => M thuộc trung tính AE
suy ra: BM là trung trực AE
c) \(\Delta EMC\) vuông tại E
=> \(EM< MC\)
mà \(EM=AM\)
\(\Rightarrow\)\(AM< MC\)
a, Vì \(\Delta ABI\)và \(\Delta BDI\)đều có 1 góc vuông , mà \(\widehat{ABI}=\widehat{IBD}\)( Do BI là phân giác ) nên góc còn lại của 2 tam giác bằng nhau .
= > \(\widehat{BIA}=\widehat{BID}\) ( sử dụng t/c tổng 3 góc của 1 tam giác bằng 1800 )
= > \(\Delta ABI=\Delta DBI\left(g.c.g\right)\)
b, Vì \(\Delta ABI=\Delta DBI\)( câu a, )
= > \(AB=BD\)( 2 cạnh tương ứng )
c, Từ câu a, = > \(AI=ID\), mà \(\Delta DIC\)có IC là cạnh huyền nên IC > DI hay IC > AI
d, Vì \(\Delta ABI\perp A\)nên \(\widehat{AIB}\)chắc chắn là góc nhọn
= > góc bù với \(\widehat{AIB}\)là \(\widehat{BIC}\) là góc tù.
Mà trong 1 \(\Delta\), cạnh đối diện với góc tù luôn là cạnh lớn nhất trong \(\Delta\)( Do trong \(\Delta\)chỉ có tối đa 1 góc tù nên cạnh đối diện góc tù sẽ là lớn nhất )
= > Cạnh BC lớn nhất trong \(\Delta BIC\)hay BC > BI
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
a:Xet ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
góc ABI=góc DBI
=>ΔBAI=ΔBDI
b: Xét ΔIAE vuông tại A và ΔIDC vuông tại D có
IA=ID
góc AIE=góc DIC
=>ΔIAE=ΔIDC
=>IE=IC
c: IA=ID
mà ID<IC
nên IA<IC