K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

A B C D I

TA CÓ:\(\frac{AD}{CD}=\frac{AB}{BC}\)VÌ BD LÀ PHÂN GIÁC CỦA                        (1)

VÌ \(AB\perp AC\left(gt\right)\)

VÀ \(CI\perp AC\left(gt\right)\)

NÊN \(AB//CI\)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{CI}\)(HỆ QUẢ ĐỊNH LÍ TA-LET)         (2)

TỪ  (1) VÀ (2) \(\Rightarrow\frac{AB}{BC}=\frac{AB}{CI}\)

                        \(\Rightarrow BC=CI\)

MÀ AB<BC VÀ AC<BC  (VÌ BC LÀ CẠNH HUYỀN CỦA TAM GIÁC VUÔNG ABC)

DO ĐÓ AB<CI VÀ AC<CI

HỌC TỐT

28 tháng 6 2020

A B C M N H E D I I

Xét \(\Delta ABM\)và \(\Delta NDM\)có: \(\hept{\begin{cases}\widehat{A}=\widehat{DNM}=90^o\left(gt\right)\\MB=MD\left(gt\right)\\\widehat{AMB}=\widehat{NMD}\end{cases}}\Rightarrow\Delta ABM=\Delta NDM\left(ch-gn\right)\left(đpcm\right)\)

Ta có \(\widehat{ABM}=\widehat{NDM}\left(\Delta ABM=\Delta NDM\right)\)

\(\widehat{ABM}=\widehat{CBM}\)(BM là phân giác \(\widehat{B}\))

\(\Rightarrow\widehat{NDM}=\widehat{CBM}\)hay \(\widehat{EDB}=\widehat{EBD}\)

\(\Rightarrow\Delta BED\)cân tại E

=> BE=DE (đpcm)

Kẻ MH vuông góc với BC tại H

Ta có MH=MA (vì BM là tia phân giác của \(\widehat{B}\))

và MA=MN (\(\Delta ABM=\Delta NDM\)

=> MN=MH

Xét \(\Delta MHC\)vuông tại H có MH<MC (vì MC là cạnh huyền)

=> MN<MC (đpcm)

30 tháng 4 2016

Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).

a) Chứng minh: HB < AH < HC.

b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.

   Chứng minh: CI là tia phân giác của góc ACB.

c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).

   Chứng minh: ID + IC > KE+ DC.

Câu hỏi tương tự Đọc thêm
Toán lớp 7Hình học
              
 
1 tháng 5 2016

ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg