Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AKMI có
\(\widehat{AKM}=\widehat{AIM}=\widehat{KAI}=90^0\)
Do đó: AKMI là hình chữ nhật
Answer:
Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.
a. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC
=> CMDN là hình chữ nhật
b. Xét tam giác abc VUÔNG TẠI a:
D là trung điểm AB
=> CD là đường trung tuyến
=> CD = DB = AD
=> Tam giác CDB cân tại D
Mà DN vuông góc với BC
=> DN là đường cao và cũng là trung tuyến
=> CN = NB
Xét tứ giác DCEB:
CN = NB
DN = NE
Mà DE vuông góc BC
=> Tứ giác DCEB là hình thoi.
c) Xét tam giác \(ABC\)vuông tại \(C\)có:
\(AB^2=AC^2+BC^2\)(định lí Pythagore)
\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)
suy ra \(AC=8\left(cm\right)\).
\(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy ra \(DM//AB\)
mà ta lại có \(D\)là trung điểm của \(AB\)
nên \(DM\)là đường trung bình của tam giác \(ABC\).
Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)
Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).
\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).
d)
Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).
Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).
Vậy tam giác \(ABC\)vuông cân tại \(C\).
\(a,\widehat{AHD}=\widehat{AED}=\widehat{HAE}=90^0\\ \Rightarrow AHDE\text{ là hcn}\\ b,\text{Vì }D\text{ là trung điểm }BC;DE\text{//}AB\left(\perp AC\right)\\ \Rightarrow E\text{ là trung điểm }AC\\ \text{Mà }E\text{ là trung điểm }DM\\ \Rightarrow ADCM\text{ là hbh}\)