K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)

\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)

Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)

\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)

Mà ME là trung tuyến nên cũng là đường cao

Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)

Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)

Vậy M,E,F thẳng hàng

12 tháng 2 2020

a, xét tam giác AMB và tam giác DMC có : MA = MD (gt)

MC = MB do M là trung điểm của BC (gt)

góc DMC = góc BMA (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

b,  tam giác AMB = tam giác DMC (câu a)

=> góc DCM = góc MAB (đn) mà 2 góc này so le trong

=> DC // AB (đl)

c, 

12 tháng 2 2020

A B C M D

https://olm.vn/thanhvien/cuongktl

SÉT \(\Delta AMC\)\(\Delta DMB\)

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\left(đđ\right)\)

\(MC=MB\left(gt\right)\)

\(\Rightarrow\Delta AMC=\Delta DMB\left(C-G-C\right)\)

TA CÓ\(\Delta MAB+\Delta AMC=\Delta ABC\)

\(\Delta DMB+\Delta MDC=\Delta DCB\)

MÀ \(\Delta AMC=\Delta DMB\left(cmt\right)\)

      \(\Delta MAB=\Delta MDC\left(cmt\right)\)

\(\Rightarrow\Delta ABC=\Delta DCB\)

\(\Rightarrow\widehat{A}=\widehat{D}=90^o\)(HAI GÓC TƯƠNG ỨNG)

VẬY \(\Delta BDC\)TAM GIÁC VUÔNG TẠI D

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

6 tháng 8 2022

Vì \(\Delta AMB=\Delta AMC\) (cmt)

\(\Rightarrow\) góc BAM = góc CAM

Xét \(\Delta AHM\) và \(\Delta AKM\) có:

góc AHM = góc AKM = \(90^0\)(vì \(MH\perp AB;MK\perp AC\)) (gt)

AM chung

góc HAM = góc KAM (vì góc BAM = góc CAM)

\(\Rightarrow\Delta HAM=\Delta KAM\) (cạnh huyền - góc nhọn)

\(\Rightarrow MH=MK\) (2 cạnh tương ứng)

Lưu ý: từ "góc" trong bài là phải kí hiệu lên nhé; ở trong này mik ko biết kí hiệu mũ nên mik viết từ "góc" rồi ak. Mong bạn chú ý ak chứ viết vào vở có chữ "góc" là ko có điểm đâu nhé!