K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

a: Ta có: H và D đối xứng nhau qua BA

nên AB là đường trung trực của HD

Suy ra: AB\(\perp\)HD và M là trung điểm của HD

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AC\(\perp\)HE và N là trung điểm của HE

Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

22 tháng 12 2017

a) Xét tứ giác AMHN có:

MÂN=AMH=ANH=90độ

=> AMHN là hình chữ nhật

b) Xét tam giác ANE và tam giác DME có

AN=DM(=MH)

NE=AM(=HN)

góc ANE = góc DMA (=90 độ)

Do đó tam giác ANE = tam giác DME (C-G-C)

=> góc ADM = NAE

Trong tam giác DMA vuông tại M có:

góc ADM +MAD=90

NAE + MAD=90

Ta có 

DAE=DAM+MAN+NAE

DAE=90+DAM+NAE

DAE=90+90

DAE=180

Vậy D,A,E thẳng hàng

24 tháng 10 2018

A B C H D M N E 1 2 3 4

MK chỉ gợi ý thôi bạn tự triển khai nha! có gì không hiểu thì nhắn tin hỏi mk!

a, MHNA là hình chữ nhật vì có 3 góc \(\widehat{M};\widehat{N};\widehat{A} =90^o\)

b,nối DA và AE

Ta có:

AB là đường trung trực của DH ( tự cm) nên BD=BH và AD=AH 

\(\Rightarrow \Delta BDA=\Delta BHA (c.c.c)\)

\(\Rightarrow \widehat{A_1}=\widehat{A_2}\) (1)

cm tương tự ta được \(\widehat{A_3}=\widehat{A_4}\) (2)

Từ (1) và (2) suy ra

\(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=2\widehat{A_2}+2\widehat{A_3}=2\left(\widehat{A_2}+\widehat{A_3}\right)\)

\(=2.90^o=180^o\)

\(\Rightarrow\widehat{DAE}=180^o\) suy ra D,A,E thẳng hàng

c, Từ 2 cặp tam giác bằng nhau đã cm ở câu b ta suy ra được 

\(\widehat{BDA}=\widehat{BHA}=90^o\Rightarrow BD\perp DE\)

và \(\widehat{AEC}=\widehat{AHC}=90^o\Rightarrow EC\perp DE\)

Từ 2 cái trên suy ra BD//EC suy ra DBCE là hình thang  

( đây là hình thang vuông nha!)

d, cũng từ 2 cặp tam giác bằng nhau ở câu b suy ra

AH=DA và AH=AE

suy ra AH+AH=AD+AE=DE

mà MHNA là HCN suy ra MN=AH

suy ra AH+AH=AH+MN

suy ra AH+MN=DE

30 tháng 11 2014

a:32-7x+2

=3x2-6x-x+2=(3x2-6x)-(x-2)

=3x(x-2)-(x-2)=(x-2)(3x-1).

 

 

1 tháng 12 2014

à wen phần b:x4-64=(x2)2-82

 

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

29 tháng 10 2022

a: H và D đối xứng nhau qua AB

nen AB vuông góc với HD tại M và M là trung điểm của HD

=>ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)

H và E đối xứng nhau qua AC

nên AC vuông góc với HE tại N và N là trung điểm của HE

=>ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

b: Từ (1) và (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

c: Xét ΔAHB và ΔADB có

AH=AD

BH=BD

AB chung

Do đó: ΔAHB=ΔADB

=>góc ADB=90 độ

=>BD vuông góc với DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

HC=EC

AC chung

Do đó: ΔAHC=ΔAEC

=>góc AEC=90 độ

=>CE vuông góc với ED(4)

Từ (3) và (4) suy ra BDEC là hình thang