Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tính BC:
Áp dụng định lí Py-tago vào \(\Delta\)vuông ABC
ta có: BC2=BA2+AC2
=>BC2= 62+82
=> BC2= 36+64
=>BC2= 100
=> BC= \(\sqrt{100}\)
=> BC= 10 (cm)
b)c/m \(\Delta\)HAB đồng dạng \(\Delta\)HCA:
Ta có: - tam giác HAB đồng dạng với tam giác ABC ( \(\widehat{B}\)chung)
- tam giác HAC đồng dạng với tam giác ABC ( \(\widehat{C}\)chung)
=> \(\Delta HAB\)đồng dạng \(\Delta HCA\)( cùng đồng dạng \(\Delta ABC\))
có bạn nào giúp minh câu c và d được k. mình k cho
a) \(\Delta ABH\) có \(BI\) là phân giác \(\widehat{ABH}\), áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{IH}{IA}=\frac{BH}{AB}\)
\(\Rightarrow\)\(IH.AB=IA.BH\)
b) Xét 2 tam giác vuông: \(\Delta BHA\) và \(\Delta BAC\) có:
\(\widehat{B}\) CHUNG
\(\widehat{AHB}=\widehat{CAB}\)
suy ra: \(\Delta BHA\)\(~\)\(\Delta BAC\)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{BA}{BC}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) hình như đề sai, bn ktra lại nhé
d) Ta có: \(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}\left(=90^0\right)\)
mà \(\widehat{ABE}=\widehat{IBH}\)
\(\Rightarrow\)\(\widehat{BEA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AIE}\) (đối đỉnh)
\(\Rightarrow\)\(\widehat{AIE}=\widehat{AEI}\)
\(\Rightarrow\)\(\Delta AIE\) cân
Mình bổ sung câu c nhé ^^
Ta có:\(\frac{IH}{IA}=\frac{BH}{AB}\left(1\right)\)
\(\frac{AE}{CE}=\frac{AB}{BC}\left(\text{BE là đường phân giác góc B}\right)\left(2\right)\)
\(\frac{BH}{AB}=\frac{AB}{BC}\left(\text{\Delta BHA ~\Delta BAC}\right)\left(3\right)\)
Từ (2) và (3) suy ra:
\(\frac{AE}{CE}=\frac{BH}{AB}\left(4\right)\)
Từ (1) và (4) suy ra:
\(\frac{IH}{IA}=\frac{AE}{EC}\)
Chúc bạn học tốt ^^