Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\Leftrightarrow2\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AH}\)
Gọi I là trung điểm AC
Ta có : \(BG=GH=2GI\Rightarrow GI=IH\)
Tứ giác \(AGCH\)có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành
\(\Rightarrow AH=GC\)
\(2\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{AH}+\overrightarrow{HC}+\overrightarrow{BH}+\overrightarrow{HC}=\overrightarrow{AH}+2\overrightarrow{GH}+2\overrightarrow{HC}\)
\(=\overrightarrow{AH}+2\overrightarrow{GH}+2\left(\overrightarrow{HG}+\overrightarrow{GC}\right)=\overrightarrow{AH}+2\overrightarrow{GC}=\overrightarrow{AH}+2\overrightarrow{AH}=3\overrightarrow{AH}\)
A B C H G I
Bài 3:
AB/AC=2/3
nên HB/HC=4/9
=>HB=4/9HC
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>4/9HC2=36
=>HC=9(cm)
=>HB=4(cm)
\(AB=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
A B C H M I M'
Gọi M' là điểm thuộc tia đối của IA sao cho AI = IM' => AM' là đường kính của (I)
Dễ thấy : \(\begin{cases}BH\text{//}CM'\\CH\text{//}BM'\end{cases}\)=> BHCM' là hình bình hành
=> Hai đường chéo M'H và BC cắt nhau tại trung điểm của mỗi đường mà M là trung điểm của BC => M cũng là trung điểm M'H
=> HM = MM'
Lại có : AI = IM' (cách dựng hình)
=> MI là đường trung bình của tam giác AHM'
=> AH=2IM (đpcm)
A B C H G I M Từ (gt) ta có :
\(IM\perp BC\)
\(AH\perp BC\)
=> IM // AH
Lấy G là trọng tâm\(\Delta ABC\) : AG = 2GM
Áp dụng định lí Ta-lét ta có:
\(\frac{\overrightarrow{IM}}{\overrightarrow{AH}}\) =\(\frac{\overrightarrow{GM}}{\overrightarrow{AG}}\)
<=> \(\frac{IM}{AH}\) =\(\frac{GM}{AG}\)
<=> \(\frac{IM}{AH}\) =\(\frac{1}{2}\) (vì AG = 2GM)
<=>AH=2IM
Mình giải thế này các bạn xem có đúng ko
AB giao AH \(\Rightarrow A=\left\{{}\begin{matrix}x-3y+11=0\\3x+7y-15=0\end{matrix}\right.\)
\(\Rightarrow A\left(-2;3\right)\)
AB giao BH \(\Rightarrow B=\left\{{}\begin{matrix}x-3y+11=0\\3x-5y+13=0\end{matrix}\right.\)
\(\Rightarrow B\left(4;5\right)\)
*\(AH\perp BC\Rightarrow BC:7x-3y+a=0\)
Mà BC đi qua B \(\Rightarrow7\times4-3\times5+c=0\Rightarrow c=-13\)
BC: \(7x-3y-13=0\)
*\(BH\perp AC\Rightarrow AC:5x+3y+c=0\)
Mà AC đi qua A \(\Rightarrow5\times\left(-2\right)+3\times3+c=0\Rightarrow c=1\)
AC: \(5x+3y+1=0\)
a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)
Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.
Suy ra AH \(\perp\) BC
Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.
Suy ra góc HFC + góc HDC = 180o
Suy ra HFCD là tứ giác nội tiếp
\(\Rightarrow\) góc HDC = góc HCD.
b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH
Suy ra MD = ME
Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD
Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD
Theo ý a) ta có góc HFD = góc HCD = góc ECD
\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD
Suy ra tứ giác MFOD là tứ giác nội tiếp
\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO
Chứng minh tương tự ta có MEFO là tứ giác nội tiếp
Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.
Chỉ lm bài thoii, hình bn tự vẽ nha !!!
\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)
Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp
Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)
\(b.\) Tứ giác \(ADEH\) có:
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp
Từ đó \(\widehat{BAK}=\widehat{BDE}\)
Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )
Do đó \(\widehat{BJK}=\widehat{BDE}\)
Ta có H nằm giữa B, C nên:
\(BC=BH+CH=10+42=52\left(cm\right)\)
Xét ΔABC vuông tại A và có đường cao AH ta có:
\(AB^2=BH\cdot BC\) (cạnh góc vuông và hình chiếu)
\(\Rightarrow AB=\sqrt{BH\cdot BC}\)
\(\Rightarrow AB=\sqrt{10\cdot52}=\sqrt{520}=2\sqrt{130}\left(cm\right)\)
Mà: \(\left|\overrightarrow{AB}\right|=AB\)
\(\Rightarrow\left|\overrightarrow{AB}\right|=2\sqrt{130}\left(cm\right)\)