K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

a) Xét ΔABM và ΔDCM có:

       BM=MC(gt)

      \(\widehat{BMA}=\widehat{CMD}\)(đđ)

      AM=DM

=> ΔABM=ΔDCM(c.g.c)

=>\(\widehat{ABM}=\widehat{MCD}\) .Mà 2 góc này ở vị trí soletrong)

=>AB//CD

b)Vì ΔABC vuông tại A(gt)

=> AM=BM=MC

 Có: AD=AM+MD

          BC=MB+MC

Mà: AM=BM(cmt); MD=MC(cmt)

=>BC=AM

Vì ΔABM=ΔDCM(cmt)

=>AB=DC

Xét ΔABC và ΔCDA có:

      AB=DC(cmt)

     AC: cạnh chung

       BC=AD(cmt)

=>ΔABC=ΔCDM(c.c.c)

c) Vì ΔABC vuông tại A(gt)

=>AM=BC/2

 

26 tháng 4 2020

A B C M

a) Xét t/giác ABM và t.giác ACM

có: AB = AC (gt)

AM : chung

BM = MC (gt)

=> t/giác ABM = t/giác ACM (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc t/ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^0\)

=> AM vuông góc với BC

b) Ta có: BM = MC = 1/2BC = 1/2.32 = 16 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABM vuông tại M, ta có:

\(AB^2=AM^2+BM^2\)

=> AM2 = AB2 - BM2 = 342 - 162 = 900

=> AM = 30 (cm)

c) Chu vi t/giác AMB = 34 + 16 + 30 = 80 (cm)

Diện tích t/giác ABM là: 30 x 16 : 2 = 240 (cm2)

25 tháng 4 2018

a)Xet 2 tam giac vuong AHB va DHC co:

HC chung 

DH = AH

=>\(\Delta\)AHB = \(\Delta\)AHC (2 canh goc vuong)

Ta co : CA=CD (2 canh tuong ung)

=>\(\Delta\)CAD can

b)

13 tháng 4 2019

help me > _ <

a)Ta có : tam giác ABC vuông tại A (gt)

Mà: AM=BC/2(gt)

=>M là trung điểm của BC

=>BM=CM=AM=BC/2

=>tam giác AMB cân tại M

b)Ta có : tam giác AMB cân tại M

Mà: MN là trung tuyến của tam giác AMB nên:

MN cũng là đường cao của tam giác AMB

=>MN vuông góc với AB

Mà AC vuông góc với AB (tam giác ABC vuông tại A)

nên: MN//AC

=>MNAC là hình thang 

Ta lại có: góc BAC =90o 

Vậy MNAC là hình thang vuông

24 tháng 8 2020

cho mình xin fb được không :))

M A B C N K H

Dựng hình ( như trên )

a,Ta có \(K=A=90^0\)=> tứ giác BKCA là hình chữ nhật 

Lại có \(\hept{\begin{cases}BN=NA\\KH=HC\end{cases}< =>NH//BK/}/AC\)

\(< =>BNH=KHN=ANH=CHN=90^0\)

Nên ta có thể xét được hai tam giác BMN = AMN ( c-g-c )

<=> BM = AM <=> tam giác AMB cân tại M

b, Ta có MN và HN cùng vuông góc với BA 

Nên N,H,M thẳng hàng <=> NM // AC ( do cùng vuông góc với AB )

Từ MN // AC và A = N = 90* <=> tứ giác NMCA là hình thang vuông