Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
A B C E D K H - - + + I
a) Xét △AHI và △ADI có:
AH = AD (gt)
AI: chung
IH = ID (I: trung điểm HD)
=> △AHI = △ADI (c.c.c)
b) Xét △HAC có: HAC + AHC + HCA = 180o (định lí tổng ba góc △)
=> HAC = 180o - AHC - HCA
=> HAC = 180o - 90o - 30o
=> HAC = 60o (1)
Vì △AHI = △ADI => AH = AD (2 cạnh tương ứng) (2)
Từ (1) và (2) => △ADH đều
c) Vì △AHI = △ADI => IAH = IAD (2 góc tương ứng)
Hay KAH = KAD
Xét △AHK và △ADK có:
AH = AD (cmt)
KAH = KAD (cmt)
AK: chung
=> △AHK = △ADK (c.g.c)
=> AHK = ADK (2 góc tương ứng)
=> ADK = 90o
=> DK \(\perp\) AD (*)
Lại có BAD = 90o => AB \(\perp\) AD (**)
Từ (*) và (**) => AB // DK
d) Vì △HAD đều => HAD = 60o
Mà KAH = KAD (cmt) => KAD = 30o
Xét △KAD có: KAD = KCA (= 30o)
=> △KAC cân tại K
Mà KD \(\perp\)AC
=> KD là đường cao △KAC cũng vừa là đường trung trực
Vậy khi đó thì DA = DC
Mà AH = AD => AH = DC
Lại có HA = HE và AH = DC => HE = DC
Xét △KEH và △KCD có:
EHK = CDK (= 90o)
KH = KD (△KAH = △KAD)
HE = DC (cmt)
=> △KEH = △KCD (2cgv)
=> EKH = CKD (2 góc tương ứng)
Có: EKH + EKC = 180o
=> CKD + CKE = 180o
=> EKD = 180o
=> E, K, D thẳng hàng