Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{C}=180^0-30^0-95^0=55^0\)
Xét ΔABC có \(\widehat{A}< \widehat{C}< \widehat{B}\)
nên BC<AB<AC
1,tam giác ABC vuông tại A ⇒ B+C=90 ⇒ C= 90-B mà B>45 ⇒ C<45
vậy C<B
2, tam giác ABC vuông tại A nên cạnh BC lớn nhất
AC là cạnh đối diện B, AB là cạnh đối diện C mà B>C nên AC>AB
vậy sắp xếp các cạnh từ lớn đến bé là BC,AC,AB
^A+^B+^C=1800
⇒1000+200+^C=1800
⇒^C=1800−1000−200=600
⇒^A>^C>^B
Áp dụng quan hệ giữa cạnh và góc đối diện => BC > AB >AC
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)
hok tốt !!!
a)Xét tam giác ABC: \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\), mà góc A =100 độ ⇒^B+^C=80 độ
Áp dụng công thức tổng tỉ, ta có: ^B= 80:4.3=60 độ
Vậy ^C=20 độ, từ đó so sánh 3 cạnh của tam giác
b) Từ câu trên, ta có: AB<AC (1)
Có HB là hình chiếu của AB (2)
Có HC là hình chiếu của AC (2)
Từ (1) và (2) có HB<HC
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
B A C
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
Lời giải:
a)
Theo định lý Pitago ta có:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
b)
Từ kết quả phần a ta suy ra:
$BC>AC> AB$
$\Rightarrow \widehat{A}> \widehat{B}> \widehat{C}$
ta có góc A= 90 độ; góc B< 45 độ suy ra góc C=90-B mà B< 45 độ suy ra C>B
suy ra: 90>90-B>45
suy ra A>C>B
suy ra : BC>AB>AC