Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>900k^2=900
=>k=1
=>HB=25cm; HC=36cm
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
a) Ta có : AH2 = BH x HC
=》 256 = 25 x HC
=》 HC = 10,24
BC = BH +HC = 35,24
Lại có : AB\(^2\)= BH x BC
=》 AB2 = 25 x 35,24 = 881
=》 AB = \(\sqrt{ }\)881
Áp dụng định lý Py ta go vào \(\Delta\)ABC có :
AC2 +AB2 = BC2
=》 AC2 = 1241,8576 - 881
=》 AC2 = 360,8576
=》 AC \(\approx\)19
b) Áp dụng định lý Py ta go vào \(\Delta\)ABH có :
AB2 = BH2 + AH2
AH2 = 144 -36
AH = 6\(\sqrt{ }\)3
Lại có : AB2 = BH x BC
144 = 6 x BC
=》 BC = 24
=》 HC = 24 - 6 = 18
Áp dụng định lý Py ta go vào \(\Delta\)ABC có :
AB2 + AC2 = BC2
=》 AC2 = 576 - 144
=》 AC = 12\(\sqrt{ }\)3
a) Áp dụng định lí Py-ta-go vào \(\Delta AHB\) vuông ở \(\widehat{H}\)ta có:
AB2=AH2+BH2
=> AB=\(\sqrt{16^2+25^2}\)
<=>AB=\(\sqrt{881}\)
Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
AH2=BH.CH
<=> 162=25.CH
<=>256=25.CH
=>CH=\(\frac{256}{25}\)=10,24
Ta có:BC=BH+CH
<=>BC=25+\(\frac{256}{25}\)=\(\frac{881}{25}\)=35.24
Áp dụng định lí Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
BC2=AB2+AC2
<=>AC2=BC2-AB2
=>AC=\(\sqrt{\left(\sqrt{881}\right)^2-\left(\frac{881}{25}\right)^2}\)=\(-\sqrt{360,8576}\)
b)Áp dụng định lí Py-ta-go vào \(\Delta AHB\)vuông tai \(\widehat{H}\)ta có:
AB2=AH2+BH2
<=>AH2=AB2-BH2
<=>AH=\(\sqrt{12^2-6^2}\)=\(\sqrt{108}\)
Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tai \(\widehat{A}\)ta có:
AH2=BH.CH
<=>108=36.CH
=>CH=\(\frac{108}{36}\)=3
Ta có:BC=BH+CH
<=> BC=6+3=9
Áp dụng Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
BC2=AB2+AC2
<=>AC2=BC2-AB2
=> AC=\(\sqrt{9^2-12^2}\)=\(-\sqrt{63}\)
Nhớ sau mỗi kết quả của phép tính viết "(cùng đơn vị đo)" nhé!
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
27/12/2017 lúc 18:59
Ex1: Điền từ thích hợp vào chỗ trống
This is Ba. He(1)......... a student.Every morning he(2).........up at 5.30.He(3).............. his teeth and takes a(4)............... then has breakfast at 6.15. He goes to school(5)........six thirty.His house is(6).............his house so he walks.The classes(7)............at 7.15 and finish at 11.15.In the afternoon he plays sports with his friend,Nam. They play badminton but now they(8).................soccer.In the evening he (9)......his homework and goes to(10).........at 9.30
Ex2:Cho dạng đúng của động từ trong ngoặc
1.My sister(have)...........classes from Monday to Friday
2.She(read)................a book in her room now
3.He(get)........................up at 6.00 every day?
4.There(not be)..............a big yard behind his classroom
Dễ quá đi
6:
a: AB^2=BH*BC
=>BH(BH+6,4)=6^2
=>BH=3,6cm
b: AC=căn 6,4*10=8cm
Áp dụng hệ thức lượng vào tam giác vuông ABC vuông tại A, đường cao AH có:
\(AH^2=HB.HC\\ \Rightarrow CH=\dfrac{AH^2}{HB}=\dfrac{\left(\dfrac{60}{13}\right)^2}{\left(\dfrac{25}{13}\right)}=\dfrac{144}{13}\left(cm\right)\)
\(BC=BH+HC=\dfrac{25}{13}+\dfrac{144}{13}=13\left(cm\right)\)
\(AB^2=HB.BC\\ \Rightarrow AB=\sqrt{\dfrac{25}{13}.13}=5\left(cm\right)\)
\(AC^2=HC.BC\\ \Rightarrow AC=\sqrt{\dfrac{144}{13}.13}=12\left(cm\right)\)