Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC vuông tại A
mà AP là đường trung tuyến
nên \(AP=\dfrac{BC}{2}=5\left(cm\right)\)
Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{1}{2}BC\)
=>\(MN=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
b: Xét ΔABC có
N,P lần lượt là trung điểm của CA,CB
=>NP là đường trung bình của ΔABC
=>NP//AB và \(NP=\dfrac{AB}{2}\)
Ta có: NP//AB
M\(\in\)AB
Do đó: NP//AM
ta có: \(NP=\dfrac{AB}{2}\)
\(AM=\dfrac{AB}{2}\)=MB
Do đó; NP=AM=MB
Xét tứ giác AMPN có
AM//NP
AM=NP
Do đó: AMPN là hình bình hành
Hình bình hành AMPN có \(\widehat{MAN}=90^0\)
nên AMPN là hình chữ nhật
Ta có xet tam giác CDB có
CM= MB ( m t điểm cb )
NM //BD
=> CN= CD
Lại có CM=MB và CN =CD => NM là đường tb tg CDB
=> NM=1/2 BD (2)
Xét tg ADB
AE=EB
FE//BD
=> AF=FD
Lại có AF=FD và AE=EB => FE là đường tb tg ADB
=> EF= 1/2 BD (1)
Từ 1,2 => Ef = MN
a, Xét tam giác BEC và tam giác AEK có:
EB=EK (gt)
góc BEC=góc AEK (đối đỉnh)
EA=EC (gt)
Do đó: tam giác BEC=tam giác AEK (c.g.c)
Suy ra: BC=AK (2 cạnh tương ứng)
b, Xét tam giác ABC cân tại A có AM là đường phân giác tại đỉnh A nên AM đồng thời là đường cao và là đường trung tuyến ứng với cạnh BC
Vậy AM vuông góc với BC (1) và M là trung điểm của BC
Tam giác BEC=Tam giác AEK (cmt) suy ra:góc BCE=góc AKE
Do đó: AK song song với BC. (2) (vì có 2 góc so le trong bằng nhau)
Từ (1) và (2) thì AM vuông góc với AK
c, M là trung điểm của BC(gt) nên MB=MC= 1/2 BC= 1/2 .12 =6(cm)
AM vuông góc với BC(cmt) suy ra: tam giác AMB vuông tại M
Do đó: AM^2 +BM^2 =AB^2
AM^2 + 6^2 =10^2 (vì BM= 6cm,AB=10cm)
AM^2 + 36=100
AM^2 =64
AM=8 (cm)
Xét tam giác ABC có 2 đường trung tuyến AM và BE cắt nhau tại O nên O là trọng tâm của tam giác ABC
Vậy OM =1/3 AM =1/3 .8 =8/3 (cm)
MIB cân tại M vì góc MIB= góc MBI
Nên MB=MI=12cm
=> MI//AC, ta có:
AMAB=IMBC=1230=35AMAB=IMBC=1230=35
⇒AB−12AB=35⇒AB=30(cm)⇒AB−12AB=35⇒AB=30(cm)
BD là phân giác ngoài của góc ABC, ta có:
ADCD=ABBC=3020=32ADCD=ABBC=3020=32
Do đó BC // DN, ta lại có:
ANBN=ADCN=32ANBN=ADCN=32
⇒ABBN=12;30BN=12⇒ABBN=12;30BN=12
Do đó BN=60(cm). Từ đó ta có: MN=72(cm)
b) Ta có EF//AB nên:
IAIC=ABEC(1)IAIC=ABEC(1)vàADCD=ABCF(2)ADCD=ABCF(2)
Do đó BI và BD là phân giác trong và ngoài của góc B trong tam giác ABC, ta có: IAIC=DADC(3)IAIC=DADC(3)
Từ (1), (2) và (3) ta có: ABEC=ABCFABEC=ABCFdo đó EC=EF
Từ IAIC=BIIE⇒AI.IE=BI.IC
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
A B C M N H E F O d
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:
\(AH^2+HB^2=AB^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)
b) Xét tam giác OMN có BC//MN (gt)
\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)
Xét tam giác OME có ME// NC ( vì ME//AC )
\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)
\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)
\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)
a)ta có MA=MB
NA=NC
=)MN là đường trung bình tam giác ABC
=)MN//BC
b)ta có MN là đường trung bình tam giác ABC (cmt)
=)MN=1/2BC
lại có BC = 10cm (gt)
=)MN=BC/2=5 cm
B A C M N
a) Xét tam giác ABC có :
M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình của tam giác ABC ( định nghĩa )
=> MN // BC ( tính chất )
b) Vì MN là trung bình của tam giác ABC ( chứng minh trên )
\(\Rightarrow MN=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\) ( tính chất )