K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

a)ta có MA=MB

NA=NC

=)MN là đường trung bình tam giác ABC

=)MN//BC

b)ta có MN là đường trung bình tam giác ABC (cmt)

=)MN=1/2BC

lại có BC = 10cm (gt)

=)MN=BC/2=5 cm

11 tháng 11 2019

B A C M N

a) Xét tam giác ABC có : 

M là trung điểm của AB

N là trung điểm của AC

=> MN là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // BC ( tính chất )

b) Vì MN là trung bình của tam giác ABC ( chứng minh trên )

\(\Rightarrow MN=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\) ( tính chất ) 

a: Ta có: ΔABC vuông tại A

mà AP là đường trung tuyến

nên \(AP=\dfrac{BC}{2}=5\left(cm\right)\)

Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{1}{2}BC\)

=>\(MN=\dfrac{1}{2}\cdot10=5\left(cm\right)\)

b: Xét ΔABC có

N,P lần lượt là trung điểm của CA,CB

=>NP là đường trung bình của ΔABC

=>NP//AB và \(NP=\dfrac{AB}{2}\)

Ta có: NP//AB

M\(\in\)AB

Do đó: NP//AM

ta có: \(NP=\dfrac{AB}{2}\)

\(AM=\dfrac{AB}{2}\)=MB

Do đó; NP=AM=MB

Xét tứ giác AMPN có

AM//NP

AM=NP

Do đó: AMPN là hình bình hành

Hình bình hành AMPN có \(\widehat{MAN}=90^0\)

nên AMPN là hình chữ nhật

 

31 tháng 7 2018

Ta có xet tam giác CDB có

CM= MB ( m t điểm cb )

NM //BD 

=> CN= CD

Lại có CM=MB và CN =CD => NM là đường tb tg CDB

=> NM=1/2 BD (2)

Xét tg ADB

AE=EB

FE//BD

=> AF=FD

Lại có AF=FD và AE=EB => FE là đường tb tg ADB

=> EF= 1/2 BD (1)

Từ 1,2 => Ef = MN

a, Xét tam giác BEC và tam giác AEK có:

                            EB=EK (gt)

                            góc BEC=góc AEK (đối đỉnh)

                            EA=EC (gt)

Do đó: tam giác BEC=tam giác AEK (c.g.c)

Suy ra: BC=AK (2 cạnh tương ứng)

b, Xét tam giác ABC cân tại A có AM là đường phân giác tại đỉnh A nên AM đồng thời là đường cao và là đường trung tuyến ứng với cạnh BC

Vậy AM vuông góc với BC (1) và M là trung điểm của BC

Tam giác BEC=Tam giác AEK (cmt) suy ra:góc BCE=góc AKE

Do đó: AK song song với BC. (2) (vì có 2 góc so le trong bằng nhau)

Từ (1) và (2) thì AM vuông góc với AK

c, M là trung điểm của BC(gt) nên MB=MC= 1/2 BC= 1/2 .12 =6(cm)

AM vuông góc với BC(cmt) suy ra: tam giác AMB vuông tại M

Do đó:    AM^2 +BM^2 =AB^2

              AM^2 + 6^2 =10^2 (vì BM= 6cm,AB=10cm)

              AM^2 + 36=100

              AM^2 =64

              AM=8 (cm)

Xét tam giác ABC có 2 đường trung tuyến AM và BE cắt nhau tại O nên O là trọng tâm của tam giác ABC

Vậy OM =1/3 AM =1/3 .8 =8/3 (cm)

6 tháng 10 2021

MIB cân tại M vì góc MIB= góc MBI

Nên MB=MI=12cm

=> MI//AC, ta có:

AMAB=IMBC=1230=35AMAB=IMBC=1230=35

AB12AB=35AB=30(cm)⇒AB−12AB=35⇒AB=30(cm)

BD là phân giác ngoài của góc ABC, ta có:
ADCD=ABBC=3020=32ADCD=ABBC=3020=32

Do đó BC // DN, ta lại có:

ANBN=ADCN=32ANBN=ADCN=32

ABBN=12;30BN=12⇒ABBN=12;30BN=12

Do đó BN=60(cm). Từ đó ta có: MN=72(cm)

b) Ta có EF//AB nên:

IAIC=ABEC(1)IAIC=ABEC(1)ADCD=ABCF(2)ADCD=ABCF(2)

Do đó BI và BD là phân giác trong và ngoài của góc B trong tam giác ABC, ta có: IAIC=DADC(3)IAIC=DADC(3)

Từ (1), (2) và (3) ta có: ABEC=ABCFABEC=ABCFdo đó EC=EF

Từ IAIC=BIIEAI.IE=BI.IC

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

làm đc bao nhiêu cũng đc giúp mình với

3 tháng 3 2020

A B C M N H E F O d

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=26\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{120}{13}\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H ta đươc:

\(AH^2+HB^2=AB^2\)

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{50}{13}\left(cm\right)\)

b) Xét tam giác OMN có BC//MN (gt)

\(\Rightarrow\frac{OM}{OC}=\frac{ON}{OB}\)( định lý Ta-let) (1)

Xét tam giác OME có ME// NC ( vì ME//AC )

\(\Rightarrow\frac{OE}{ON}=\frac{OM}{OC}\)( định lý Ta-let) (2)

\(\Rightarrow\frac{ON}{OB}=\frac{OE}{ON}\)

\(\Rightarrow ON^2=OE.OB\left(đpcm\right)\)