Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Sử dụng hệ thức lượng trong tam giác vuông thôi:
AB*AC = AH*BC = 12*25 = 300
AB^2 + AC^2 = BC^2 = 25^2 = 625
giải hệ trên ta được : AB = 15, AC = 20
AB^2 = BH*BC=> BH = AB^2/BC = 9
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15
Áp dụng hẹ thức lượng trong tam giác vuông:
\(AB.AC=AH.BC=78\)
\(\Rightarrow AB=\dfrac{78}{AC}\)
Lại có:\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{78}{AC}\right)^2+AC^2=169\)
\(\Leftrightarrow AC^4-169AC^2+6084=0\)\(\Leftrightarrow\left[{}\begin{matrix}AC=\sqrt{117}=3\sqrt{13}\\AC=\sqrt{52}=2\sqrt{13}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}AB=2\sqrt{13}\\AB=3\sqrt{13}\end{matrix}\right.\)
Vậy \(AB=2\sqrt{13};AC=3\sqrt{13}\) hoặc \(AC=2\sqrt{13};AB=3\sqrt{13}\)
Xét \(\Delta\)ABC vuông tại A, đường cao AH
\(AB.AC=AH.BC=6.13=78\)
\(\rightarrow AC=\dfrac{78}{AB}\)
Xét \(\Delta ABC\) vuông tại A
\(\rightarrow AB^2+AC^2=BC^2\left(Pytago\right)\)
\(\rightarrow AB^2+\left(\dfrac{78}{AB}\right)^2=13^2\)
\(\rightarrow AB^2+\dfrac{6084}{AB^2}=169\)
\(\rightarrow AB^4+6084=169AB^2\)
\(\rightarrow AB^4-169AB^2+6084=0\)
Đặt \(t=AB^2>0\). Phương trình trở thành:
\(t^2-169t+6084=0\)
\(\Leftrightarrow t^2-117t-52t+6084=0\)
\(\Leftrightarrow t\left(t-117\right)-52\left(t-117\right)=0\)
\(\Leftrightarrow\left(t-52\right)\left(t-117\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-52=0\\t-117=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=52\\t=117\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB^2=52\\AB^2=117\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB=\sqrt{52}=2\sqrt{13}\rightarrow AC=\dfrac{78}{2\sqrt{13}}=3\sqrt{13}\\AB=\sqrt{117}=3\sqrt{13}\rightarrow AC=\dfrac{78}{3\sqrt{13}}=2\sqrt{13}\end{matrix}\right.\)
Vậy hai cạnh góc vuông của tam giác vuông là \(3\sqrt{13}\) và \(2\sqrt{13}\)
Vì SABC=37,5=>AH.BC=75=>BC=12,5
Đặt cạnh CH=x
=>HB=12,5-x
Áp dụng hệ thức 2 vào tam giác abc
AH2=BH.CH
<=>62=x(12,5-x)
<=>36=12,5x-x2
<=>x2-12,5x+36=0
<=>(x-6,25)2=3
..............tìm x sau đó thay vào tìm ab,ac
a)
xét tam giác ABC vuông tại A:
=> tan C= AH/HC=12/15=0.8 (tỉ số lượng giác)
=>C=40 độ
ta có: góc B= 90 độ - góc C (vì C+B=90 vì A=90 )
góc B=90 độ - 40 độ
góc B=50 độ.
xét tam giác ABC vuông tại A có:
Cos B = AH/BH (tỉ số lượng giác)
=> BH=AH/ cos B = 12/cos 50 độ=18.67 cm
b) xét tam giác ABC vuông tại A có:
AB^2 = BH*BC (hệ thức lượng)
AB^2=18.67*25
AB^2=466.7
=>AB=21.6
ta lại có:
AH*BC=AB*AC (hệ thức lượng)
12 * 25= 21.6*AC
=>AC=(12*25)/21.6=13.89 cm
a) Đặt BH=x => CH=BC-BH=25-x
Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A, AH vuông góc với BC, ta có:
+) AH2= BH . CH
hay 122= x(25-x)
<=> 144=25x-x2
<=> x2-25x+144=0
<=>(x2-9x)-(16x-144)=0
<=>x(x-9)- 16(x-9)=0
<=>(x-9)(x-16)=0
<=> x-9=0 x=9
<=>
x-16=0 x=16
vì AB<AC nên BH<CH. Mà BC =25=> x=BH=9 cm=> CH= 25-9=16cm
+) AB2=BH. BC=9. 25=225=> AB=15cm
+)AC2=CH. BC= 16.25=400=> AC=20cm
b)Ta có: snB= AC/BC= 0,8=> góc B=53 độ
Xét tam giác ABC có đường trung tuyến AM=> AM=1/2 BC= BM=> tam giác ABM cân tại M => góc B = góc BAM=53 độ
=> AMH hay AMB= 180 độ- ( 53 độ+53 độ)=74 độ
c) Áp dụng định lí Py-ta -go vào tam giác ABH ta có :
BH2= AB2- AH2
hay BH2= 152-122=81=> BH= 9cm
Ta có : BM=1/2 BC=1/2.25=12,5 cm=> HM= BM-BH=12,5-9=3,5cm
=> S tam giác AHM= AH.HM:2=12.3,5:2=21cm2
Có nhiều cách giải, bạn làm theo cách này cx đc
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)