Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Xét ΔAHB vuông tại H có
\(AH^2+HB^2=AB^2\)
hay AH=3,6(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay BC=7,5(cm)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=4,5(cm)
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
Áp dụng hẹ thức lượng trong tam giác vuông:
\(AB.AC=AH.BC=78\)
\(\Rightarrow AB=\dfrac{78}{AC}\)
Lại có:\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{78}{AC}\right)^2+AC^2=169\)
\(\Leftrightarrow AC^4-169AC^2+6084=0\)\(\Leftrightarrow\left[{}\begin{matrix}AC=\sqrt{117}=3\sqrt{13}\\AC=\sqrt{52}=2\sqrt{13}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}AB=2\sqrt{13}\\AB=3\sqrt{13}\end{matrix}\right.\)
Vậy \(AB=2\sqrt{13};AC=3\sqrt{13}\) hoặc \(AC=2\sqrt{13};AB=3\sqrt{13}\)
Xét \(\Delta\)ABC vuông tại A, đường cao AH
\(AB.AC=AH.BC=6.13=78\)
\(\rightarrow AC=\dfrac{78}{AB}\)
Xét \(\Delta ABC\) vuông tại A
\(\rightarrow AB^2+AC^2=BC^2\left(Pytago\right)\)
\(\rightarrow AB^2+\left(\dfrac{78}{AB}\right)^2=13^2\)
\(\rightarrow AB^2+\dfrac{6084}{AB^2}=169\)
\(\rightarrow AB^4+6084=169AB^2\)
\(\rightarrow AB^4-169AB^2+6084=0\)
Đặt \(t=AB^2>0\). Phương trình trở thành:
\(t^2-169t+6084=0\)
\(\Leftrightarrow t^2-117t-52t+6084=0\)
\(\Leftrightarrow t\left(t-117\right)-52\left(t-117\right)=0\)
\(\Leftrightarrow\left(t-52\right)\left(t-117\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-52=0\\t-117=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=52\\t=117\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}AB^2=52\\AB^2=117\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB=\sqrt{52}=2\sqrt{13}\rightarrow AC=\dfrac{78}{2\sqrt{13}}=3\sqrt{13}\\AB=\sqrt{117}=3\sqrt{13}\rightarrow AC=\dfrac{78}{3\sqrt{13}}=2\sqrt{13}\end{matrix}\right.\)
Vậy hai cạnh góc vuông của tam giác vuông là \(3\sqrt{13}\) và \(2\sqrt{13}\)