Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
Goc ABD=58 => DBK=32 => HBK=61 (1)
BHD=180-90-29(58/2)=61 (2)
Tu (1) va (2) suy ra HBK=BHK=61 => tam giac BHK can :)
a, xét tam giác ABC và tam giác DBE có : góc B chung
AB = BD (Gt)
góc BAC = góc BDE = 90
=> tam giác ABC = tam giác DBE (cgv-gnk)
b, xét tam giác ABH và tam giác DBH có : BH chung
AB = BD (Gt)
góc HAB = góc HDB = 90
=> tam giác ABH = tam giác DBH (ch-cgv)
=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD
=> BH là pg của góc ABC (đn)
c, AB = BD (gt) có BD = 6 (gt)
=> AB = 6
BD + DC = BC
BD = 6; CD = 4
=> BC =10
tam giác ABC vuông tại A (Gt)
=> BC^2 = AB^2 + AC^2
=> AC^2 = 10^2 - 6^2
=> AC^2 = 64
=> AC = 8 do AC > 0
a) vì tam giác ABC vuông tại A và có góc ABC = 600
=> tam giác ABC đều
=> AB = AC = BC
hihi!!!
Trịnh Tài Đức mk giải sai rùi sorry do đọc ko kĩ đề hì !!!!!!
756865