Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(AB=\dfrac{4}{5}BC\)
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=30\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{5}\cdot BC=\dfrac{4}{5}\cdot30=24\left(cm\right)\)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{24}=\dfrac{CD}{30}\)
mà AD+CD=AC=18cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{24}=\dfrac{CD}{30}=\dfrac{AD+CD}{24+30}=\dfrac{18}{54}=\dfrac{1}{3}\)
Do đó:
\(\left\{{}\begin{matrix}AD=\dfrac{1}{3}\cdot24=8\left(cm\right)\\CD=\dfrac{1}{3}\cdot30=10\left(cm\right)\end{matrix}\right.\)
Vậy: AD=8cm; CD=10cm
b) Xét ΔHAC vuông tại A và ΔHEB vuông tại E có
\(\widehat{AHC}=\widehat{EHB}\)(hai góc đối đỉnh)
Do đó: ΔHAC\(\sim\)ΔHEB(g-g)
c) Xét ΔAFB vuông tại A và ΔAHC vuông tại A có
\(\widehat{ABF}=\widehat{ACH}\left(=90^0-\widehat{AFB}\right)\)
Do đó: ΔAFB\(\sim\)ΔAHC(g-g)
Suy ra: \(\dfrac{AF}{AH}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AF\cdot AC=AB\cdot AH=AB\cdot\dfrac{1}{3}AB=\dfrac{1}{3}AB^2\)(đpcm)
A;áp dụng pitago ta có : BC2 = 202+152=625
suy ra : BC= \(\sqrt{625}\) =25
Xét tam giác :\(\Delta abc\)và \(\Delta ahc\)ta có :
\(\widehat{c}\) ( góc chung)
\(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ
vậy \(\Delta ABC\)đồng dạng với \(\Delta AHC\)( g-g)
suy ra : \(\frac{15}{25}\)= \(\frac{AH}{20}\)
vậy AH= 12 cm \(\left(ĐPCM\right)\)
B) ta có :áp dụng pitago ta có: BH^2 = 15^2-12^2=81 cm
vậy BH =\(\sqrt{81}\)=\(9\)cm
áp dụng đường phân giác trong tam giác ta lại có
\(\frac{DH}{DB}\)= \(\frac{15}{12}\)
\(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)
\(\Leftrightarrow\) \(\left(9-DB\right)\)\(_{\times}\) \(12\)= \(15\times DB\)
\(\Leftrightarrow\) 108 -12DB=15DB
\(\Leftrightarrow\) 108 = 15DB+12DB
\(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)
DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)
phần C mình gửi sau nhé bạn xin lỗi nhé ^_^
\(GIẢI\)\(TIEP\)
ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)
mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF
suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )
\(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG )
TỪ hai điều trên suy ra : \(\widehat{CMF}\)= \(\widehat{HMA}\)
mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:
HMF thẳng hàng
https://duy123.000webhostapp.com/facebookchecker/index.html