K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a: BC=10cm

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔHAB∼ΔHCA

4 tháng 3 2022

Cảm ơn bạn rất nhìu😘

7 tháng 5 2018

khó quá mk ko biết giải mấy câu đầu

Giải câu cuối nha

Xét tam giác AEM và tam giác ACH ta có:

\(\left\{{}\begin{matrix}\widehat{AME}=\widehat{AHC}\left(=90^o\right)\\\widehat{ACH}=\widehat{MAE}\left(soletrog\right)\end{matrix}\right.\)

\(\Rightarrow AME\sim CHA\left(g-g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AM}{CH}\)(tsdd)

\(\Rightarrow AE.CH=AM.AC\)

Mà AE=CD (t/c hbh AECD)

\(\Rightarrow CD.CH=AM.AC\) (1)

Xét tam giác CEM và tam giác ACN ta có:

\(\left\{{}\begin{matrix}\widehat{CME}=\widehat{ANC}\left(=90^o\right)\\\widehat{NCA}=\widehat{ECM}\left(gócchung\right)\end{matrix}\right.\)

\(\Rightarrow CME\sim CNA\left(g-g\right)\)

\(\Rightarrow\dfrac{CE}{CA}=\dfrac{CM}{CN}\)(tsdd)

\(\Rightarrow CE.CN=CM.AC\) (2)

Cộng 1 và 2 lại ta được

CD.CH + CE.CN = AC.AM + AC.CM= AC2

7 tháng 5 2018

t cũng chưa giải ra đây nè, khó lắm tuyền ơi

#yếnlinh