K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

a)

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

b)

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC2 (định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = \(\sqrt{400}\) = 20 (cm)

mà AM = \(\frac{1}{2}\)BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

26 tháng 12 2021

A.

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

B.

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC(định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = √400400 = 20 (cm)

mà AM = 1212BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

20 tháng 12 2015

a) MI là đường TB của \(\Delta\)ABC => MI //BC => MI _|_ AB tại trung điểm I của AB ; Mà I là trung điểm của MN ( M dx N qua I)

=> tứ giác AMBN là hình thoi ( Có 2 dg chéo _|_ tại TĐ ..)

b) Pi ta go \(\Delta\) ABC => BC =20 

trung tuyến AM = BC/2 = 20/2 =10

=> cạnh hình thoi = AM =10

IM = AC/2  ( t/c đường TB)

=> MN = 2IM =2.AC/2 =AC = 16

Pi ta go \(\Delta\)AIM => IA2 = AM2 - IM2 =102 - 82 = 62

=> IA =6 => AB =2IA =2.6 =12

22 tháng 11 2023

a: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

nên AMCK là hình bình hành

Hình bình hành AMCK có MA=MC

nên AMCK là hình thoi

b: AMCK là hình thoi

=>AK//MC và AK=MC

AK//MC

M\(\in\)BC

Do đó: AK//MB

AK=MC

MC=MB

Do đó: AK=MB

Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)

AMCK là hình thoi

=>CA là phân giác của \(\widehat{KCM}\)

=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)

=>\(\widehat{ACB}=45^0\)

a: Xét ΔABC có

M,I lần lượt là trung điểm của CB,CA

=>MI là đường trung bình của ΔABC

=>MI//AB và MI=AB/2

MI//AB

\(I\in MK\)

Do đó: MK//AB

\(MI=\dfrac{AB}{2}\)

\(MI=\dfrac{MK}{2}\)

Do đó: AB=MK

Xét tứ giác ABMK có

MK//AB

MK=AB

Do đó: ABMK là hình bình hành

b: Để hình bình hành AKMB là hình thoi thì MB=BA

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}\)

=>AM=MB=BA

=>ΔMAB đều

=>\(\widehat{ABC}=60^0\)

29 tháng 12 2018

a)tứ giác AMBN có

I là trung điểm AB (gt)

I là trung điểm NM (N đx M qua I)

=> AMBN là HBH (vì là tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

có I là trung điểm AB (gt)

M là TĐiểm BC (AM là đường trung tuyến)

=> IM là đường trung bình tgiasc ABC (đnghĩa)

=> IM // AC IM = AC /2 (t/c đường trung bình)

IM // AC => IM vuộng AB (AC vuông AB )

hay NM vuông AB

HBH ABCD có 2 đường chéo vuông vs nhau=> ABCD là Hthoi (...)

b) có IM = AC/2 (cmcaau a).

=> IM = 6/2=3 (cm)

có I là Tđiểm NM (N đx M qua I)

=> NM = IM .2=6 (cm)

S hthoi AMBN = 1/2.6.4=12 (cm2 )

c) tam giác vuông ABC cần đk cân tại A để AMBN là Hvuông