Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔABC có E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF//BC và EF=BC/2
b: ΔKAC vuông tại K có KF là trung tuyến
nên KF=AC/2
Xét ΔABC có ME//AC
nên ME/AC=BE/BA=1/2
=>ME=1/2AC
=>ME=KF
Xét tứ giác MKEF có
MK//EF
ME=KF
=>MKEF là hình thang cân
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc FAE=90 độ
=>AEMF là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔABC có
m là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔCAB có MF//AB
nên MF/AB=CM/CB=1/2
=>MF=1/2BA=EB
mà MF//EB
nên MFEB là hbh
b: AEMF là hcn
=>AM cắt EF tại trung điểm của mỗi đường
=>O là trung điểm của EF
=>OE=OF
A B C M E F N
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6
Kéo dài MN cắt AB tại D => CA; MD là đường cao tg CBD => K là trực tâm=> BK _|_CD (1*)
Mà AH//MD \(\Rightarrow\) \(\frac{BA}{BD}=\frac{BH}{BM}\Rightarrow\frac{2BN}{BD}=\frac{BH}{BM}\Rightarrow\frac{BN}{BD}=\frac{BH}{2BM}=\frac{BH}{BC}\Rightarrow\)NH//CD (2*)
Từ (1*,2*) => BK _|_HN\(\Rightarrowđcpm\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔABC có
M là trung điểm của BC
ME//AC
=>E là trung điểm của AB
Xét ΔCAB có
M là trung điểm của BC
MF//AB
=>F là trung điểm của AC
Xét ΔABC có
E,F lần lượt là trung điểm của AB,AC
=>EF là đường trung bình
=>EF=BC/2 và EF//BC
b: ΔHAC vuông tại H có HF là đường trung tuyến
nên HF=AC/2
Xét ΔBAC có ME//AC
nên ME/AC=BM/BC=1/2
=>ME=1/2AC
=>ME=HF
Xét tứ giác MHEF có
MH//EF
ME=HF
=>MHEF là hình thang cân