K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

Hình đơn giản nên tự vẽ nhá.

a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144 

=> AC = căn 144 = 12 (cm)

b) Xét tam giác BIA và tam giác BIH:

BAI^ = BHI^ = 90o

IBA^ = IBH^ 

BI chung

=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)

=> BA = BH (2 cạnh tương ứng)

=> Tam giác AHB cân

4 tháng 7 2016

a.Ta có: AB=9cm ; BC=15cm

Theo định lý Py-ta-go: BC2 = AB2 +AC2

=>AC=BC2 - AB2 =152 - 92  = 225-81= 144

AC2 = 144 =>AC=\(\sqrt{144}\)=12cm

b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H

             Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A

 Xét tg BIH và tg ABI có:

  • góc ABI = góc HBI (BI là phân giác góc B)
  •  BI chung

=> BIH = ABI ( cạnh huyền - góc nhọn)

Do đó: AB = BH

mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

19 tháng 6 2017

a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :

AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12

b)Xét tam giác ABE và DBE có :

     Góc A=góc B(=90 độ)

     BA=BD(gt)

     Chung cạnh BE

suy ra tam giác ABE= BDE (c.g.c)

c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )

            Suy ra BE là tia phân giác cua góc ABC

Xét tam giác BDK và BAC có :

       Chung góc B

       BA=BD(gt)

       góc D = góc A (=90 độ)

suy ra tam giác BDK=tam giác BAC (g.c.g)

suy ra AC=DK (2 cạnh tương ứng ) 

                  ( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )

a.

Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:

A1 = A2 (AI là tia phân giác của BAC)

AI là cạnh chung

=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)

=> IH = IK (2 cạnh tương ứng)

=> Tam giác IHK cân tại I

b.

AH = AK (Tam giác HAI = Tam giác KAI)

=> Tam giác AHK cân tại A

=> AHK = \(\frac{180-HAK}{2}\) 

mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)

=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị

=> HK // BC

c. Gọi M là giao điểm của AI và HK

Xét tam giác AHM và tam giác AKM có:

AH = AK (Tam giác AHI = Tam giác AKI)

A1 = A2 (AI là tia phân giác của BAC)

AM là cạnh chung

=> Tam giác AHM = Tam giác AKM (c.g.c)

=> AMH = AMK (2 góc tương ứng)

mà AMH + AMK = 180 (2 góc kề bù)

=> AMH = AMK = 90

=> AI _I_ HK