Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)tự cm tam giác AHI=AKI=> HI=KI=>TAM GIÁC IHK CÂN
b) dễ wa bạn có thể cm
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB chung
=>ΔAHB=ΔAKC
=>AH=AK
b:
Xét ΔABC có
BH,CK là đường cao
BH cắt CK tại I
=>I là trực tâm
=>AI vuông góc BC tại M
Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có
BC chung
KC=HB
=>ΔKBC=ΔHCB
=>góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác
c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC
`Answer:`
Sửa đề phần c: Chứng minh KF//BC.
C H B A F K
a. Xét `\triangleAHB` và `\triangleAHC`
`AH` chung
`\hat{AHB}=\hat{AHC}=90^o`
`AB=AC`
`=>\triangleAHB=\triangleAHC(ch-cgv)`
b. Xét `\triangleFAH` và `\triangleKAH`
`AH` chung
`\hat{FAH}=\hat{KAH}`
`\hat{AFH}=\hat{AKH}=90^o`
`=>\triangleFAH=\triangleKAH(ch-gn)`
`=>HK=HF`
c. Theo phần b. `\triangleFAH=\triangleKAH`
`=>AF=AK`
`=>\triangleAFK` cân ở `A`
Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`
`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)
hình tự vẽ nhé.
xét: \(\Delta AHB\) VÀ \(\Delta AHC\) CÓ:
\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)
\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)
b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)
XÉT: \(\Delta KBH\)VÀ \(\Delta FCH\) CÓ:
\(BH=CH\left(cmt\right)\)
\(\widehat{BKH}=\widehat{CFH}=90^0\)
\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)
\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)
\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)
c) ta có: \(AB=AC;;BK=FK\left(cmt\right)\)
\(\Rightarrow AB-BK=AC-FC\)
\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A
\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)
Ta có : tam giác AMH = tam giác AMK
=> AH = AK
Xét tam giác AHI và tam giác AKI có :
AH = AK
góc HAI = góc IAK ( vì AI là phương giác )
AI chung
=> tam giác AHI = tam giác AKI
=> góc AHI = góc AKI = 180 độ / 2 = 90 độ
và HI = IK = HK/ 2 = 6/2 = 3
Xét tam giác vuông AIK vuông tại I có :
AI = \(\sqrt{AK^2-IK^2}=\sqrt{5^2-3^2}=4\)
=> AI = 4 cm
Ta có hình vẽ:
A B C M H K
(Ảnh ko chuẩn lắm)
Vì \(\Delta ABC\)cân tại A nên AM vừa là tia phân giác, vừa là đường cao của \(\Delta ABC\)
=> MB=MC(t/chất của đường cao trong tam giác cân, tự chứng minh nhé)
Xét \(\Delta MBH\)và \(\Delta MCK:\)
BM=CM(cmt)
\(\widehat{HBM}=\widehat{KCM}\)( \(\Delta ABC\)cân tại A)
\(\Rightarrow\Delta HBM=\Delta KCM\left(ch-gn\right)\)
=> HB=KC( 2 cạnh tương ứng)
Mà AB=AC => AH=AK
Xét \(\Delta AHI\)và \(\Delta AKI:\)
AH=AK (cmt)
AI: cạnh chung
\(\widehat{HAI}=\widehat{KAI}\)(gt)
\(\Rightarrow\Delta AHI=\Delta AKI\left(c-g-c\right)\)
=> HI=IK(2 cạnh tương ứng)
\(\Rightarrow IK=\frac{HK}{2}=\frac{6}{2}=3cm\)
Lại có: AH=AK => \(\Delta AHK\)cân tại A
=> AI là đường cao của \(\Delta AHK\)
Xét \(\Delta AIK\)vuông tại I có:
Áp dụng định lý Py- ta-go, ta có:
AI2+IK2=AK2
=> AI2=AK2-IK2
=> AI2=52-32
=> AI2=16
=> AI=4cm
Vậy AI=4cm
a) ta có : HK_|_AC và AB_|_AC
=> KH//AB ( cùng vuông góc với AC)
b) xét tam AKI ta có AH_|_KI
và HK=HI
=> AH vừa là đường cao vừa là đường trùng tuyến của tam giác AKI
=> tam giác AKI cân tại A
c) theo câu a) HK//AB
=> góc BAK= góc AKI ( so le trong)
mà góc AKI= góc AIK ( tam giác AKI cân )
=> góc BAK = góc AIK
d) xét tam giác AIC và tam giác AKC
có :
IA=AK (tam giác AKI cân )
AH vừa là đường cao vừa là đường trùng tuyến của tam giác AKI=> AK là đường phân giác => góc IAC= góc KAC
AC chung
=> giác AIC = tam giác AKC
=> ĐPCM
bạn tự vẽ hình OK?
a.
Xét tam giác HAI vuông tại H và tam giác KAI vuông tại K:
A1 = A2 (AI là tia phân giác của BAC)
AI là cạnh chung
=> Tam giác HAI = Tam giác KAI (cạnh huyền - góc nhọn)
=> IH = IK (2 cạnh tương ứng)
=> Tam giác IHK cân tại I
b.
AH = AK (Tam giác HAI = Tam giác KAI)
=> Tam giác AHK cân tại A
=> AHK = \(\frac{180-HAK}{2}\)
mà ABC = \(\frac{180-BAC}{2}\) (Tam giác ABC cân tại A)
=> AHK = ABC mà 2 góc nằm ở vị trí đồng vị
=> HK // BC
c. Gọi M là giao điểm của AI và HK
Xét tam giác AHM và tam giác AKM có:
AH = AK (Tam giác AHI = Tam giác AKI)
A1 = A2 (AI là tia phân giác của BAC)
AM là cạnh chung
=> Tam giác AHM = Tam giác AKM (c.g.c)
=> AMH = AMK (2 góc tương ứng)
mà AMH + AMK = 180 (2 góc kề bù)
=> AMH = AMK = 90
=> AI _I_ HK